Guoquan Wang - University of Houston
Skip to main content

Guoquan Wang

Guoquan Wang

Guoquan Wang

Curriculum Vitae pdf

Professor of Geophysics, Geodesy, and Geosensing Systems Engineering

Ph.D., 2001, Solid Earth Geophysics, Institute of Geology, China Earthquake Administration

Office: 231 SR1
Office Hours: M/W 10:00a-3:00p | F 10:00a-4:00p
Phone: (713)  743-3224
gwang@uh.edu

Google Scholar Profile
ResearchGate Profile 

GRADUATE STUDENT OPPORTUNITIES
I am seeking graduate students to work on GPS and LIDAR technique developments and their applications to studies of earthquake, landslide, subsidence, faulting, coastal erosion, sea-level change, and structural monitoring.

RESEAR INTERESTS

  1. Coastal hazards (e.g., faulting, subsidence, wetland loss) in the Gulf Coast area
  2. Caribbean neotectonics
  3. GPS seismology, strong earthquake ground motion
  4. Applications of GPS and LIDAR technologies in natural hazards studies
  5. Geological hazard risk analysis and mitigation
  6. Field and structural monitoring and instrumentation
  7. Numerical modeling---Numerical 3D simulation (e.g., Parallel Super-Computer Numerical Simulation, MPI and Finite Difference Method)

TEACHING
GEOL6324 Satellite Positioning and Geodesy (Each Fall Semester)
GEOL6396 Solid Earth Geophysics Seminar (Fall Semester, Odd Years)
GEOL6323 Geoscience Applications of GPS and LIDAR (Each Spring Semester)
GEOL4332 Geoscience Applications of GPS and LIDAR (Each Spring Semester)
GEOL 4355 Geophysics Field Camp (Each Summer)
GEOL4330 Introduction to Geophysics (Fall Semester, Even Years)

MAJOR REPRESENTATIVE PEER-REVIEWED JOURNAL PUBLICATIONS

        (*denotes graduate student/postdoc under my primary supervision. All publications can be downloaded from my ResearchGate Profile)

  • Zhao R., Wang G., Yu X., Sun X., Bao Y., Xiao G., Gan W., and Shen S. (2020). Rapid Land Subsidence in Tianjin, China Derived from Continuous GPS Observations (2010–2019), IAHS-the International Association of Hydrological Sciences, 97, 2020 https://doi.org/10.5194/piahs-97-1-2020
  • Agudelo*, Wang G., Liu Y., Bao Y., and Turco M.J. (2020). GPS geodetic infrastructure for subsidence and fault monitoring in Houston, Texas, USA. Proc. IAHS-the International Association of Hydrological Sciences, 97, 2020 https://doi.org/10.5194/piahs-97-1-2020
  • Wang G., Zhou X., Wang K., Ke X., Zhang Y., Zhao R., and Bao Y. (2020). GOM20: A Stable Geodetic Reference Frame for Subsidence, Faulting, and Sea-Level Rise Studies along the Coast of the Gulf of Mexico, Remote Sensing 12 (3), 350.
  • Xiong*, Wang G., Bao Y., Zhou X., Wang K., Liu H., Sun X., and Zhao R. (2019). A Rapid Terrestrial Laser Scanning Method for Coastal Erosion Studies: A Case Study at Freeport, Texas, USA, Sensors 19 (15), 3252.
  • Guo* W., Wang G., Bao Y., Li P., Zhang M., Gong Q., Li R., Gao Y., and Zhao R. (2019). Detection and Monitoring of Tunneling-Induced Riverbed Deformation Using GPS and BeiDou: A Case Study. Applied Sciences 9 (13), 2759
  • Liu*, Sun X., Wang G., Turco M.J., Agudelo G., Bao Y., Zhao R., and Shen S. (2019). Current Activity of the Long Point Fault in Houston, Texas Constrained by Continuous GPS Measurements (2013–2018), Remote Sensing 11 (10), 1213
  • Wang G., Liu H., Mattioli G., Miller M., Feaux K., Braun J. (2019). CARIB18: A Stable Geodetic Reference Frame for Geological Hazard Monitoring in the Caribbean Region. Remote Sens. 2019, 11, 1-35.
  • Kearns* T. J., Wang G., Turco M., Welch J., and Tsibanos V. (2019). Houston16: A stable geodetic reference frame for subsidence and faulting study in the Houston metropolitan area, Texas, U.S. Geodesy &Geodynamics, 10(5), 382-393, doi:10.1016/j.geog.2018.05.005
  • Xiong* L., Wang G., Bao Y., Zhou X., Sun X., Zhao R. (2018). Detectability of Repeated Airborne Laser Scanning for Mountain Landslide Monitoring. Geosciences 2018, 8(12), 469, https://doi.org/10.3390/geosciences8120469
  • Wang , Bao Y., Gan W., Geng J., Xiao G., and Shen J. S. (2018). NChina16: A stable geodetic reference frame for geological hazard studies in North China. Journal of Geodynamics. 115(2018), 10-22, doi:10.1016/j.jog.2018.01.003
  • Bao* Y., Guo W., Wang G., Gan W., Zhang M., and Shen J. S. (2018). Millimeter-Accuracy Structural Deformation Monitoring Using Stand-Alone GPS: Case Study in Beijing, China. Surv. Eng. 144(1), 05017007, doi:10.1061/(ASCE)SU.1943-5428.0000242
  • Wang G., Turco M., Soler T., Kearns T., and Welch, J. (2017). Comparisons of OPUS and PPP solutions for subsidence monitoring in the greater Houston area. Surv. Eng. 143(4), 05017005, doi:10.1061/(ASCE)SU.1943-5428.0000241
  • Zhou* X., Wang G., Bao Y., Xiong L., Guzman V., and Kearns T. J. (2017). Delineating Beach and Dune Morphology from Massive Terrestrial Laser Scanning Data Using the Generic Mapping Tools, Surv. Eng., 143(4), 04017008, doi: 10.1061/(ASCE)SU.1943-5428.0000223
  • Xiong* L., Wang G., and Wessel P. (2017). Anti-aliasing filtering for deriving high-accuracy DEMs from TLS data: case study at Freeport, Texas, Computers & Geosciences, 100, 125-134. doi:10.1016/j.cageo.2016.11.006
  • Yu* J., and Wang (2017). Introduction to the GNSS Geodetic Infrastructure in the Gulf of Mexico Region. Survey Review, 352(49), 51-65, doi:10.1080/00396265.2015.1108069.
  • Lyu H., Wang G., Shen J. S., Lu L., and Wang G. (2016). Analysis and GIS mapping of flooding hazards on 10 May 2016, Guangzhou, China. Water, 447(8), doi:10.3390/w8100447
  • Yang* L., Wang G., Huerfano V., von Hillebrandt-Andrade C. G., Martínez-Cruzado J. A., and Liu H. (2016). GPS Geodetic Infrastructure for Natural Hazards Study in the Puerto Rico and Virgin Islands Region, Natural Hazards, 83(1), 641-665, doi:10.1007/s11069-016-2344-7.
  • Soler T., and Wang (2016). Interpreting OPUS-Static Results Accurately, J. Surv. Eng., 142(4), 05016003, doi:10.1061/(ASCE)SU.1943- 5428.0000191.
  • Yu* J., and Wang G. (2016). GPS derived ground motions (2005–2014) within the Gulf of Mexico region referred to a stable Gulf of Mexico reference frame. Natural Hazards and Earth System Sciences, 16(7), 1583-1602, doi:10.5194/nhess-16-1583-2016.
  • Yang* L, Wang G., Bao Y., Kearns T. J., and Yu J. (2016). Comparisons of Ground-Based and Building-Based CORS: a Case Study in the Puerto Rico and Virgin Islands Region. Surv. Eng., 142(3), 05015006, doi: 10.1061/(ASCE)SU.1943-5428.0000155.
  • Wang G., Welch J., Kearns T. J., Yang L., and Serna J. (2015). Introduction to GPS geodetic infrastructure for land subsidence monitoring in Houston, Texas, U.S.A. The proceeding of the Ninth International Symposium on Land Subsidence, Nov. 15-19, 2015, Nagoya, Japan. Proc. IAHS, 92, 1–7, 2015, doi:10.5194/piahs-92-1-2015
  • Liu* H., and Wang G. (2015). Delineating relative motion between St. Croix and the Puerto Rico-Virgin Islands block using continuous GPS observations (1995-2014). International Journal of Geophysics, 915753:1-9, doi: 1155/2015/915753
  • Wang G., Bao Y., Cuddus Y., Jia X., Serna J. J., and Jing Q. (2015). A methodology to derive precise landslide displacements from GPS observations in tectonically active and cold regions: A case study in Alaska. Natural Hazards, 77:1939-1961, doi: 10.1007/s11069-015-1684-z
  • Kearns* T. J., Wang G., Bao Y., Jiang J., and Lee D. (2015). Current Land Subsidence and Groundwater Level Changes in the Houston Metropolitan Area, Texas (2005-2012), Surv. Eng., 141(4), 05015002:1-16, doi: 10.1061/(ASCE)SU.1943-5428.0000147
  • Antuna J. C., M. Miller, G. Mattioli, K. Feaux, R. Anthes, J. Braun, Wang, and A. Robock (2014). Partnering with Cuba: Weather extremes, Science, Vol. 345, ISSUE6194, 278.
  • Yu* J., Wang G., Kearns T. J., and Yang L. (2014). Is there deep-seated subsidence in the Houston-Galveston area? J. Geophys., 942834, 1-11, doi:10.1155/2014/942834
  • Wang G., and T. Soler (2014). Measuring Land Subsidence Using GPS: Ellipsoid Height vs. Orthometric Height, Surv. Eng., 141(2), 05014004, doi:10.1061/(ASCE)SU.1943-5428.0000137
  • Wang G., J. Yu, T. J. Kearns, and J. Ortega (2014). Assessing the accuracy of long-term subsidence derived from borehole extensometer data using GPS observations: case study in Houston, Texas, Surv. Eng., DOI: 10.1061/(ASCE)SU.1943-5428.0000133
  • Wang G., T. J. Kearns, J. Yu, and G. Saenz (2014). A Stable Reference Frame for Landslide Monitoring Using GPS in the Puerto Rico and Virgin Islands Region, Landslides, 11(1):119-129, doi:10.1007/s10346-013-0428-y
  • Wang G., J. Yu, J. Ortega, G. Saenz, T. Burrough, and R. Neill (2013). A Stable Reference Frame for Ground Deformation Study in the Houston Metropolitan Area, Texas, Journal of Geodetic Science, 3(3), 188-202. doi:10.2478/jogs-2013-0021
  • Wang G., T. Soler (2013). Using OPUS for Measuring Vertical Displacements in Houston, TX, Surv. Eng., 139(3), 126-134, DOI: 10.1061/(ASCE)SU.1943-5428.0000103
  • Wang G. (2013). Millimeter-Accuracy GPS Landslide Monitoring Using Precise Point Positioning with Single Receiver Phase Ambiguity Resolution: A Case Study in Puerto Rico, Journal of Geodetic Science, 3(1), 22-31.
  • Wang G., J. Joyce, D. Phillips, R. Shrestha, and W. Carter (2013), Delineating and Defining the Boundaries of an Active Landslide in the Rainforest of Puerto Rico Using a Combination of Airborne and Terrestrial LIDAR Data, Landslides, 10(4):503-513, DOI:10.1007/s10346-013-0400-x.
  • Wang G. (2013), Teaching High-Precision GPS to Undergraduates Using Online Processing Services, Journal of Geoscience Education, 61 (2), 202-212.
  • Braun, J. J., E. Calais, K. Dausz, K. Feaux, B. Friesen, G.S. Mattioli, M. M. Miller, J. Normandeau, E. Seider, and Wang (2012), COCOnet (Continuously Operating Caribbean GPS Observational Network): Infrastructure Enhancements To Improve Sea Level Monitoring, Paper No. 212178, Geological Society of America 44(7).
  • Braun, J. J., G.S. Mattioli, E. Calais, D. Carlson, T. Dixon, M. Jackson, R. Kursinski, H. Mora-Paez, M.M. Miller, R. Pandya, R. Robertson, and Wang (2012). Multi-Disciplinary Natural Hazards Research Initiative Begins Across the Caribbean Basin, EOS transactions, American Geophysical Union, 93, 9, doi:10.1029/2012EO090001.
  • Wang G., and T. Soler (2012). OPUS for Horizontal Subcentimeter-Accuracy Landslide Monitoring: A Case Study in the Puerto Rico and Virgin Islands Region, Surv. Eng., 138(3):135-143, doi:10.1061/(ASCE)SU.1943-5428.0000079.
  • Wang G., F. Blume, C. Meertens, P. Ibanez, and M. Schulze (2012). Performance of high-rate kinematic GPS during strong shaking: observations from shake table tests and the 2010 Chile earthquake (M 8.8), Journal of Geodetic Sciences, 2(1):1-16, doi:10.2478/v10156-011-0020-0.
  • Wang G. (2012), Kinematics of the Cerca del Cielo, Puerto Rico landslide derived from GPS observations, Landslides, 9 (1):117-130, doi: 10.1007/s10346-011-0277-5.
  • Wang G. (2011), GPS Landslide Monitoring: Single Base vs. Network Solutions, a case study based on the Puerto Rico and Virgin Islands Permanent GPS Network, Journal of Geodetic Sciences, 1(3): 191-203, DOI: 10.2478/v10156-010-0022-3.
  • Wang G., D. Phillips, J. Joyce, and F. O. Rivera (2011). The integration of TLS and Continuous GPS to study landslide deformation: a case study in Puerto Rico, Journal of Geodetic Science, 1(1): 25-34, DOI: 10.2478/v10156-010-0004-5.
  • Wang G., D. M. Boore, G. Tang, and X.-Y. Zhou (2007). Some observations on colocated and closely spaced 1-second sampled GPS and ground-motion accelerograph data from the 2003 San Simeon (M 6.5), California, earthquake, Seism. Soc. Am. 97, 76-90.
  • Wang G., G. Tang, C. R. Jackson, X.-Y. Zhou, and Q. Lin (2006). Strong ground motions observed at the UPSAR during the 2003 San Simeon earthquake (M 6.5) and the 2004 Parkfield earthquake (M 6.0) , Seism. Soc. Am. 96, S159-S182.
  • Wang G., G. Tang, D. M. Boore, G. V. Burban, C. R. Jackson, X.-Y. Zhou, and Q. Lin. (2006). Strong surface waves observed in the Western Coastal Plain of the Taiwan Island from one aftershock of the 1999 Chi-Chi, Taiwan, Earthquake, Seism. Soc. Am. 96, 821-845.
  • Wang G., and X.-Y. Zhou (2006). Three-Dimensional Finite-Difference Simulations of Strong Ground Motions during the 1720 Shacheng Earthquake of Yanhuai Area, Beijing, China using a Stochastic Finite-Fault model, Soil Dyn. Earthquake. Eng. 26 (10), 960-982.
  • Tong, M., Wang, and G. C. Lee (2005). Time derivative of earthquake acceleration, Earthquake Engineering and Engineering Vibration, 4(1), 1-16.
  • Wang G., D. M. Boore, H. Igel, and X.-Y. Zhou (2004). Comparisons of ground motions from five aftershocks of the 1999 Chi-Chi, Taiwan Earthquake with empirical predictions largely based on data from California, Seism. Soc. Am. 94, 2198-2212.
  • Wang G., and X. Y. Zhou (2004) Baseline Correction of Near Fault Ground Motion Recordings Caused by 1999 Chi-Chi, Taiwan Earthquake, Earthquake and Geology, 26(1), 1-15.
  • Wang G., D. M. Boore, H. Igel, and X.-Y. Zhou (2003). Some observations on colocated and closely-spaced strong ground motion records of the 1999, Chi-Chi, Taiwan Earthquake, Seism. Soc. Am. 93, 674-693.
  • Wang G., and X. Y. Zhou (2003). The Randomness of Near Fault Acceleration Time History of the 1999 Chi-Chi, Taiwan, Earthquake, Journal of Hazard Resistant and Mitigation Engineering, 23 (4), 10-18.
  • Wang G., X.-Y. Zhou, P. Z. Zhang, and H. Igel (2002). Characteristics of amplitude and duration for near fault strong ground motion from the 1999 Chi-Chi, Taiwan, Earthquake, Soil Dyn. Earthquake. Eng., 22, 73-96.
  • Wang G., X.-Y. Zhou, Z. J. Ma, and P. Z. Zhang (2001). A preliminary study on the randomness of response spectra of the 1999 Chi-Chi, Taiwan, Earthquake, Seism. Soc. Am. 91, 1358-1369.
  • Wang G., X.-Y. Zhou, Z. J. Ma, and P. Z. Zhang (2001). Data files from a preliminary study on the randomness of response spectra of the 1999 Chi-Chi, Taiwan, Earthquake, Seism. Soc. Am. 91, 1388-1389.