Faculty Profile - University of Houston
Skip to main content

Faculty Profile

Kevin E. BasslerKevin E. Bassler

Moores Professor of Physics and Mathematics
Department Chair
Department of Physics

Office: SR1-619C
Contact: bassler@uh.edu - (713) 743-3568

Education: Ph.D., Carnegie Mellon University

Complexity Theory and Non-Equilibrium Statistical Mechanics

The focus of my research is to understand and identify the fundamental principles that govern the dynamics of complex systems. I am interested in processes of growth, adaptation, self-organization, self-assembly, and evolution. Often, my approach is to construct simple models that capture the essence of experimental behavior of a class of systems, and use them to explore the common features that underlie their dynamics. My work usually involves a combination of analytic calculations and computer simulations.

Much of my current interest is in the dynamics of systems organized as complex networks. The applications include physical, biological, social, and engineered systems. I am currently working on projects to determine how to optimally route congested transport on networks, to optimally detect structure in network dynamics, to understand adaptive or evolutionary behavior of complex networks, and to understand the role of symmetry in complex network dynamics. I also interested in random matrix theory (RMT), and in applying RMT to understand the dynamics of networks.

Other current projects of mine involve the dynamics of financial markets and the behavior of materials systems, including the self-assembly of nano-structured arrays in semiconductor multilayers and the critical behavior of solids with extended defects.

Refereed Journal Articles

  1. K.E. Bassler, K. Sasaki, and R.B. Griffiths, “Interface Interactions in Modulated Phases, and Upsilon Points,” J. Stat. Phys. 62, 45-88 (1991).
    DOI: 10.1007/BF01020859
  2. K.E. Bassler and M. Olvera de la Cruz, “Monte Carlo Study of Diblock Copolymers in Dilute Solution,” J. de Physique I 3, 2387-2395 (1993).
    DOI: 10.1051/jp1:1993251
  3. K.E. Bassler, B. Schmittmann, and R.K.P. Zia, “Spatial Structures with Nonzero Winding Number in Biased Diffusion of Two Species,” Europhys. Lett. 24, 115-120 (1993).
    DOI: 10.1209/0295-5075/24/2/007
  4. K.E. Bassler and R.B. Griffiths, “Numerical Study of the Ground States of a New Type of Nonconvex Frenkel-Kontorova Model,” Phys. Rev. B 49, 904-915 (1994).
    DOI: 10.1103/PhysRevB.49.904
  5. B. Schmittmann, K.E. Bassler, K. Hwang, and R.K.P. Zia, “Biased Diffusion of Two Species,” Physica A 205, 284-291 (1994).
    DOI: 10.1016/0378-4371(94)90505-3
  6. K.E. Bassler and B. Schmittmann, “Renormalization Group Study of a Hybrid Driven Diffusive System,” Phys. Rev. E 49, 3614-3620 (1994).
    DOI: 10.1103/PhysRevE.49.3614
  7. K.E. Bassler and R.K.P. Zia, “Phase Transitions in a Nonequilibrium Potts Model: A Monte Carlo Study of Critical Behavior,” Phys. Rev. E 49, 5871-5874 (1994).
    DOI: 10.1103/PhysRevE.49.5871
  8. K.E. Bassler and Z. Racz, “Bicritical Point and Crossover in a Two Temperature, Diffusive Kinetic Ising Model,” Phys. Rev. Lett. 73, 1320-1323 (1994).
    DOI: 10.1103/PhysRevLett.73.1320
  9. K.E. Bassler and B. Schmittmann, “Critical Dynamics of Nonconserved Ising-Like Systems,” Phys. Rev. Lett. 73, 3343-3346 (1994).
    DOI: 10.1103/PhysRevLett.73.3343
  10. K.E. Bassler and Z. Racz, “Existence of Long-Range Order in the Steady State of a Two Dimensional, Two-Temperature XY Model,” Phys. Rev. E 52, R9-R12 (1995).
    DOI: 10.1103/PhysRevE.52.R9
  11. K.E. Bassler and R.K.P. Zia, “Phase Transitions in a Driven Lattice Gas at Two Temperatures,” J. Stat. Phys. 80, 499-515 (1995).
    DOI: 10.1007/BF02178545
  12. B. Schmittmann and K.E. Bassler, “Frozen Disorder in a Driven System,” Phys. Rev. Lett. 77, 3581-3584 (1996).
    DOI: 10.1103/PhysRevLett.77.3581
  13. K.E. Bassler and D.A. Browne, “Nonequilibrium Critical Dynamics of a Three Species Monomer-Monomer Model,” Phys. Rev. Lett. 77, 4094-4097 (1996).
    DOI: 10.1103/PhysRevLett.77.4094
  14. K.E. Bassler and D.A. Browne, “The Three-Species Monomer-Monomer Model: A Mean-field Analysis and Monte Carlo Study,” Phys. Rev. E 55, 5225-5233 (1997).
    DOI: 10.1103/PhysRevE.55.5225
  15. K.S. Brown, K.E. Bassler and D.A. Browne, “Mean-field Analysis and Monte Carlo Study of an Interacting Two-Species Monomer-Monomer Model,” Phys. Rev. E 56, 3953-3958 (1997).
    DOI: 10.1103/PhysRevE.56.3953
  16. K.E. Bassler and D.A. Browne, “The Three Species Monomer-Monomer Model in the Reaction-Controlled Limit,” J. Phys. A: Math Gen. 31, 6309-6318 (1998).
    DOI: 10.1088/0305-4470/31/30/001
  17. J. Trenkler, P.C. Chow, P. Wochner, H. Abe, K.E. Bassler, R. Paniago, H. Reichert, D. Scarfe, T.H. Metzger, J. Peisl, J. Bai, and S.C. Moss, “Two Length Scales and Crossover Behavior in the Critical Diffuse Scattering from V2H,” Phys. Rev. Lett. 81, 2276-2279 (1998).
    DOI: 10.1103/PhysRevLett.81.2276
  18. K.E. Bassler and M. Paczuski, “A Simple Model of Superconducting Vortex Avalanches,” Phys. Rev. Lett. 81, 3761-3764 (1998).
    DOI: 10.1103/PhysRevLett.81.3761
  19. K.E. Bassler, M. Paczuski, and G.F. Reiter, “Braided Rivers and Superconducting Vortex Avalanches,” Phys. Rev. Lett. 83, 3956-3959 (1999).
    DOI: 10.1103/PhysRevLett.83.3956
  20. M. Paczuski, K.E. Bassler, and A. Corral, “Self-Organized Networks of Competing Boolean Agents,” Phys. Rev. Lett. 84, 3185-3189 (2000).
    DOI: 10.1103/PhysRevLett.84.3185
  21. M. Paczuski, and K.E. Bassler, “Theoretical Results for Sandpile Models of Self-Organized Criticality with Multiple Topplings,” Phys. Rev. E 62, 5347-5352 (2000).
    DOI: 10.1103/PhysRevE.62.5347
  22. J.R. Claycomb, K.E. Bassler, J.H. Miller, Jr., M. Nersesyan, and D. Luss, “Avalanche Behavior in the Dynamics of Chemical Reactions,” Phys. Rev. Lett. 87, 178303 (2001).
    DOI: 10.1103/PhysRevLett.87.178303
  23. K.E. Bassler, M. Paczuski, and E. Altshuler, “A Simple Model for the Plastic Dynamics of a Disordered Flux Line Lattice,” Phys. Rev. B 64, 224517 (2001).
    DOI: 10.1103/PhysRevB.64.224517
  24. G.H. Gunarante, C.S. Rajapaksa, K.E. Bassler, K.K. Mohanty, and S.J. Wimalawansa, “A Model for Bone Strength and Osteoporotic Fracture,” Phys. Rev. Lett. 88, 068101 (2002).
    DOI: 10.1103/PhysRevLett.88.068101
  25. E. Altshuler, O. Ramos, A.J. Batista-Leyva, A. Rivera, and K.E. Bassler, “Sandpile Formation by Revolving Rivers,” Phys. Rev. Lett. 91, 014501 (2003).
    DOI: 10.1103/PhysRevLett.91.014501
  26. M. Anghel, Z. Toroczkai, K.E. Bassler, and G. Korniss “Competition-Driven Network Dynamics: Emergence of a Scale-free Leadership Structure and Collective Efficiency,” Phys. Rev. Lett. 92, 058701 (2004).
    DOI: 10.1103/PhysRevLett.92.058701
  27. Z. Toroczkai and K.E. Bassler, “Jamming is Limited in Scale-Free Networks,” Nature 428, 716 (2004).
    DOI: 10.1038/428716a
  28. K.E. Bassler, C. Lee, and Y. Lee, “Evolution of Developmental Canalization in Networks of Competing Boolean Nodes,” Phys. Rev. Lett. 93, 038101 (2004).
    DOI: 10.1103/PhysRevLett.93.038101
  29. E. Altshuler, T.H. Johansen, Y. Paltiel, P. Jin, K.E. Bassler, O. Ramos, G.F. Reiter, E. Zeldov, and C.W. Chu, “Experiments in Superconducting Vortex Avalanches,” Physica C 408, 501-504 (2004).
    DOI: 10.1016/j.physc.2004.03.191
  30. E. Altshuler, T.H. Johansen, Y. Paltiel, P. Jin, K.E. Bassler, Q. Chen, O. Ramos, G.F. Reiter, E. Zeldov, and C.W. Chu, “Vortex Avalanches and Self Organized Criticality in Superconducting Niobium,” Phys. Rev. B 70, Rapid Communications, 140505 (2004).
    DOI: 10.1103/PhysRevB.70.140505
  31. J.H. Li, D.W. Stokes, O. Caha, S.L. Ammu, J. Bai, K.E. Bassler, and S.C. Moss, “Morphological Instability in InAs/GaSb Superlattices Due to Interfacial Bonds,” Phys. Rev. Lett. 95, 096104 (2005).
    DOI: 10.1103/PhysRevLett.95.096104
  32. G. Korniss, M.B. Hastings, K.E. Bassler, M.J. Berryman, B. Kozma, and D. Abbott, “Scaling in Small-World Resistor Networks,” Phys. Letts. A 350, 324-330 (2006).
    DOI: 10.1016/j.physleta.2005.09.081
  33. A. Alejandro-Quinones, K.E. Bassler, M. Field, J.L. McCauley, M. Nicol, I. Timofeyev, A. Torok, and G. Gunaratne, “A Theory of Fluctuations in Stock Prices,” Physica A 363, 383-392 (2006).
    DOI: 10.1016/j.physa.2005.08.037
  34. O. Caha, V. Holy, and K.E. Bassler, “Nonlinear Evolution of Surface Morphology in InAs/AlAs Superlattices via Surface Diffusion,” Phys. Rev. Letts. 96, 136102 (2006).
    DOI: 10.1103/PhysRevLett.96.136102
  35. K.E. Bassler, G.H. Gunaratne, and J.L. McCauley, “Markov Processes, Hurst Exponents, and Nonlinear Diffusion Equations,” Physica A 369, 343-353 (2006).
    DOI: 10.1016/j.physa.2006.01.081
  36. B. Danila, Y. Yu, S. Earl, J.A. Marsh, Z. Toroczkai, and K.E. Bassler, “Congestion-Gradient Driven Transport on Complex Networks,” Phys. Rev. E 74, 046114 (2006).
    DOI: 10.1103/PhysRevE.74.046114
  37. M. Liu and K.E. Bassler, “Emergent Criticality from Coevolution in Random Boolean Networks,” Phys. Rev. E 74, 041910 (2006).
    DOI: 10.1103/PhysRevE.74.041910
  38. B. Danila, Y. Yu, J.A. Marsh and K.E. Bassler, “Optimal Transport on Complex Networks,” Phys. Rev. E 74, 046106 (2006).
    DOI: 10.1103/PhysRevE.74.046106
  39. J.L. McCauley, G.H. Gunaratne, and K.E. Bassler, “Hurst Exponents, Markov Processes, and Fractal Brownian Motion,” Physica A 379, 1-9 (2007).
    DOI: 10.1016/j.physa.2006.12.028
  40. C.J. Olsen Reichhardt, and K.E. Bassler, “Canalization and Symmetry in Boolean Models for Genetic Regulatory Networks,” J. Phys. A: Math. Theor. 40, 4339 (2007).
    DOI: 10.1088/1751-8113/40/16/006
  41. J.L. McCauley, G.H. Gunaratne, and K.E. Bassler, “Martingale Option Pricing,” Physica A 380, 351-356 (2007).
    DOI: 10.1016/j.physa.2007.02.038
  42. B. Danila, Y. Yu, J.A. Marsh and K.E. Bassler, “Transport Optimization on Complex Networks,” Chaos 17, 026102 (2007).
    DOI: 10.1063/1.2731718
  43. Y. Yu, B. Danila, J.A. Marsh and K.E. Bassler, “Transport Optimization on Wireless Networks,” Europhys. Lett. 79, 48004 (2007).
    DOI: 10.1209/0295-5075/79/48004
  44. K.E. Bassler, J.L. McCauley, and G.H. Gunaratne, “Nonstationary Increments, Scaling Distributions, and Variable Diffusion Processes in Financial Markets,” Proc. Nat. Acad. Sci. USA 104, 17287-17290 (2007).
    DOI: 10.1073/pnas.0708664104
  45. J.L. McCauley, K.E. Bassler, and G.H. Gunaratne, “Martingales, Detrending Data, and the Efficient Market Hypothesis,” Physica A 387, 202-216 (2008).
    DOI: 10.1016/j.physa.2007.08.019
  46. K.E. Bassler, G.H. Gunaratne, and J.L. McCauley, “Dynamics of Real Financial Markets: A Response to Frank’s Comment,” Physica A 387, 3239-3241 (2008).
    DOI: 10.1016/j.physa.2008.02.009
  47. J.L. McCauley, K.E. Bassler, and G.H. Gunaratne, “Martingales, Nonstationary Increments, and the Efficient Market Hypothesis,” Physica A 387, 3916-3920 (2008).
    DOI: 10.1016/j.physa.2008.01.049
  48. Z. Toroczkai, B. Kozma, K.E. Bassler, N.W. Hengartner, and G. Korniss, “Gradient Networks,” J. Phys. A: Math. Theor. 41, 155103 (2008).
    DOI: 10.1088/1751-8113/41/15/155103
  49. K.E. Bassler, G.H. Gunaratne, and J.L. McCauley, “Empirically Based Modeling in Finance and Beyond and Spurious Stylized Facts,” Int. Rev. Fin. Anal. 17, 767-783 (2008).
    DOI: 10.1016/j.irfa.2008.02.002
  50. K.E. Bassler, P.J. Forrester, and N.E. Frankel, “Eigenvalue Separation in Some Random Matrix Models,” J. Math. Phys. 50, 033302 (2009).
    DOI: 10.1063/1.3081391
  51. J.L. McCauley, G.H. Gunaratne, and K.E. Bassler, “Is Integration I(d) applicable to observed economics and financial time series,” Int. Rev. Fin. Anal. 18, 101-108 (2009).
    DOI: 10.1016/j.irfa.2009.03.004
  52. Y. Sun, B. Danila, K. Josic, and K.E. Bassler, “Improved community structure detection using a modified fine tuning strategy,” EPL 86, 28004 (2009).
    DOI: 10.1209/0295-5075/86/28004
  53. C.I. Del Genio, J. Trenkler, K.E. Bassler, P. Wochner, D.R. Haeffner, G.F. Reiter, J. Bai, and S.C. Moss, “Depth-dependent critical behavior in V2H,” Phys. Rev. B 79, 184113 (2009).
    DOI: 10.1103/PhysRevB.79.184113
  54. B. Danila, Y. Sun, and K.E. Bassler, “Collectively optimal routing for link capacity limited congested traffic,” Phys. Rev. E 80, 066116 (2009).
    DOI: 10.1103/PhysRevE.80.066116
  55. C.I. Del Genio, K.E. Bassler, A.L. Korzhenevskii, R.I. Barabash, J. Trenkler, G.F. Reiter, and S.C. Moss, “Depth-dependent ordering, two length-scale phenomena, and crossover behavior in a crystal featuring a skin-layer with defects,” Phys. Rev. B 81, 144111 (2010).
    DOI: 10.1103/PhysRevB.81.144111
  56. C.I. Del Genio, H. Kim, Z. Toroczkai, and K.E. Bassler, “Efficient and Exact Sampling of Simple Graphs with Arbitrary Given Degree Sequence,” PLoS ONE 5, e10012 (2010).
    DOI: 10.1371/journal.pone.0010012
  57. J.H. Li, D.W. Stokes, J.C. Wickett, O. Caha, K.E. Bassler, and S.C. Moss, “Effect of Strain on the Growth of InAs/GaSb Superlattices: An X-Ray Study,” J. Appl. Phys. 107, 123504 (2010).
    DOI: 10.1063/1.3429100
  58. C.I. Del Genio and K.E. Bassler, “Anomalous ordering in inhomogeneously strained materials,” Phys. Rev. E 82, 031115 (2010).
    DOI: 10.1103/PhysRevE.82.031115
  59. M.D. Reichl, C.I. Del Genio and K.E. Bassler, “Phase diagram for a two-dimensional, twotemperature, diffusive XY model,” Phys. Rev. E 82, 040102 (2010), Rapid Communication.
    DOI: 10.1103/PhysRevE.82.040102
  60. K.E. Bassler, P.J. Forrester, and N.E. Frankel, “Edge effects in some perturbations of the Gaussian unitary ensemble,” J. Math. Phys. 51, 123305 (2010).
    DOI: 10.1063/1.3521288
  61. M. Liu and K.E. Bassler, “Finite Size Effects and Symmetry Breaking in the Evolution of Networks of Competing Boolean Nodes,” J. Phys. A: Math. Theor. 44, 045101 (2011).
    DOI: 10.1088/1751-8113/44/4/045101
  62. C.I. Del Genio, T. Gross, and K.E. Bassler, “All scale-free networks are sparse,” Phys. Rev. Lett. 107, 178701 (2011).
    DOI: 10.1103/PhysRevLett.107.178701
  63. M.D. Reichl and K.E. Bassler, “Canalization in the critical states of highly connected networks of competing Boolean nodes,” Phys. Rev. E. 84, 056103 (2011).
    DOI: 10.1103/PhysRevE.84.056103
  64. H. Kim, C.I. Del Genio, K.E. Bassler, and Z. Toroczkai, “Constructing and sampling directed graphs with given degree sequence,” New J. Phys. 14, 023012 (2012).
  65. S. Trevino III, Y. Sun, T.F. Cooper, and K.E. Bassler, “Robust detection of hierarchical communities from Escherichia coli gene expression data,” PLoS Comput. Biol. 8, e1002391 (2012).
    DOI: 10.1371/journal.pcbi.1002391
  66. S.K. Bhavnani, G. Bellala, S. Victor, K.E. Bassler, and S. Visweswaran, “The role of complementary bipartite visual analytical representation in the analysis of SNPs: A case study in ancestral informative markers,” J. Am. Med. Infom. Assoc. 19, e5 (2012).
    DOI: 10.1136/amiajnl-2011-000745
  67. 67. B. Li, J. Li, K.E. Bassler, and C.S. Ting, “Magnetic and superconducting structures near twin boundaries in low doped Fe-pnictides,” New J. Phys. 15, 103018 (2013).
    DOI: 10.1088/1367-2630/15/10/103018
  68. S. Hossein, M.D. Reichl, and K.E. Bassler, “Symmetry in Critical Random Boolean Network Dynamics,” Phys. Rev. E 89, 042808 (2014).
    DOI: 10.1103/PhysRevE.89.042808
  69. S. Trevino, A. Nyberg, C.I. Del Genio, and K.E. Bassler, “Fast and accurate determination of modularity and its effect size,” J. Stat. Mech.: Theo. and Exper. P02003 (2015).
    DOI: 10.1088/1742-5468/2015/02/P02003
  70. A. Nyberg, T. Gross, and K.E. Bassler, “Mesoscale structures and the Laplacian spectra of random geometic graphs,” J. Complex Networks 3, 543-551 (2015).
    DOI: 10.1093/comnet/cnv004
  71. K.E. Bassler, W. Liu, B. Schmittmann, and R.K.P. Zia, “Extreme Thouless effect in a minimal model of dynamic social networks,” Phys. Rev. E 91, 042102 (2015).
    DOI: 10.1103/PhysRevE.91.042102
  72. B. Li, L.H. Pan, Y.Y. Tai, M.J. Graf, J.X. Zhu, K.E. Bassler, and C.S. Ting, “Unified description of superconducting pairing symmetry in electron-doped Fe-based-122 compounds,” Phys. Rev. B 91, 220509 (2015).
    DOI: 10.1103/PhysRevB.91.220509
  73. K.E. Bassler, D. Dhar, and R.K.P. Zia, “Networks with preferred degree: a mini-review and some new results,” J. Stat. Mech.: Theo. and Exper. P07013 (2015).
    DOI: 10.1088/1742-5468/2015/07/P07013
  74. K.E. Bassler, C.I. Del Genio, P.L. Erdos, I. Miklos, and Z. Toroczkai, “Exact sampling of graphs with prescribed degree correlations,” New J. Phys. 17, 083052 (2015).
    DOI: 10.1088/1367-2630/17/8/083052
  75. C. Orsini, M.M. Dankulov, P. Colomer-de-Simon, A. Jamakovic, P. Mahadevan, A. Vahdat, K.E. Bassler, Z. Toroczkai, M. Boguna, G. Caldarelli, S. Fortunato, and D. Krioukov, “Quantifying randomness in real networks,” Nature Comm. 6, 8627 (2015).
    DOI: 10.1038/ncomms9627
  76. R. Chauhan, J. Ravi, P. Datta, T. Chen, D. Schnappinger, K.E. Bassler, G. Balazsi, and M.L. Gennaro, “Reconstruction and topological characterization of the sigma factor regulatory network of Mycobacterium tuberculosis,” Nature Comm. 7, 11062 (2016).
    DOI: 10.1038/ncomms11062
  77. Y.Y. Zhou, B. Li, W. Li, H.Y. Chen, K.E. Bassler, and C.S. Ting, “Effects of single- and multisubstituted Zn ions in doped 122-type iron-based superconductors,” Phys. Rev. B 93, 144510 (2016).
    DOI: 10.1103/PhysRevB.93.144510
  78. L. Chen, K.E. Bassler, J.L. McCauley, and G.H. Gunaratne, “Anomalous scaling of stochastic processes and the Moses effect,” Phys. Rev. E 95, 042141 (2017).
    DOI: 10.1103/PhysRevE.95.042141
  79. K.E. Bassler and R.K.P. Zia, “Emergence of a spectral gap in a class of random matrices associated with split graphs,” J. Phys. A 51, 014002 (2018).
    DOI: 10.1088/1751-8121/aa94a9
  80. T. Chen, P. Singh and K.E. Bassler, “Network community detection using modularity density measures,” J. Stat. Mech.: Theo. and Exper. 053406 (2018).
    DOI: 10.1088/1742-5468/aabfc8
  81. S. Stolarczyk, M. Bhardwaj, K.E. Bassler, W.J. Ma and K. Josic, “Loss of information in feedforward social networks,” J. Complex Networks 6, 448-469 (2018).
    DOI: 10.1093/comnet/cnx032
  82. S.K. Bhavnani, B. Dang, S. Visweswaran, K.E. Bassler, T. Chen, M. Raji, R. Divekar, A. Karmarkar, A. Tan, Y.-F. Kuo, and K. Ottenbacher, “How high-risk comorbidites co-occur in readmitted hip fracture patients: Implications for precision medicine and predictive modeling,” preprint.
  83. T. Paixao, K.E. Bassler, and R. Azevedo, “Emergent speciation by multiple Dobzhansky-Muller incompatibilities,” preprint, bioRxiv:008268.
  84. P. Meyer, V. Adlakha, H. Kantz, and K.E. Bassler, “Anomalous diffusion and the Moses effect in a model of aging,” preprint, arXiv:1808.08139.
  85. K.E. Bassler, E. Frey and R.K.P. Zia, “Co-evolution of nodes and links: diversity driven co-existence in cyclic competition of three species,” preprint, arXiv:1808.05875.
  86. R.K.P. Zia, W. Zhang, M. Ezzatabadipour, and K.E. Bassler, “Exact results for the extreme Thouless effect in a model of network dynamics,” preprint.

Book Chapters and Conference Proceedings

  1. K.E. Bassler, “Critical Properties of Nonequilibrium Ising Systems,” in Computer Simulation Studies in Condensed Matter Physics VII, eds. D.P. Landau, K.K. Mon, and H.-B. Schuttler, (Springer-Verlag, 1994).
  2. K.E. Bassler and M. Paczuski, “Cellular Model of Superconducting Vortex Dynamics,” in Complexity from Microscopic to Macroscopic Scales: Coherence and Large Deviations, A. Skjeltorp, ed. (Kluwer Academic Publishers, Dordrecht, 2001).
  3. M. Anghel, Z. Toroczkai, G. Korniss, and K.E. Bassler, “Effect of Inter-Agent Communication on the Collective,” in Collectives and the Design of Complex Systems, K. Turner and D.H. Wolpert, eds., (Springer, 2003).
  4. T.J. Vadakkan and K.E. Bassler, “Phase Diagram and Clustering in an Anisotropic 3D Sandpile Model of Vortex Motion,” Proc. SPIE 5845, 72 (2005).
    DOI: 10.1117/12.609506
  5. K.E. Bassler and M. Liu, “Effects of Stochastic Noise on the Evolution of Canalization,” Invited paper, Proc. SPIE 5845, 104 (2005).
    DOI: 10.1117/12.609453
  6. A.L. Alejandro-Quinones, K.E. Bassler, J.L. McCauley, and G. Gunaratne, “A Theory of Fluctuations in Stock Prices: Effects of Discreteness,” Proc. SPIE 5848, 27 (2005).
    DOI: 10.1117/12.609574
  7. J.L. McCauley, G.H. Gunaratne, and K.E. Bassler, “What Economists Should Learn from Econophysics,” in Dynamics of Complex Interconnected Systems, Networks and Bioprocesses, A. Skjeltorp and A. Belyushkin, eds., (Springer, 2005).
  8. K.E. Bassler and O. Caha, “Nonlinear Evolution of Surface Morphology in Short-Period Superlattices,” in Diffuse Scattering in the 21st Century: Emerging Insights into Materials Structure and Behavior, (Momentum Press, 2009).
  9. D. Dhar, K.E. Bassler, and R.K.P. Zia, “The many-agent limit of the Extreme Introvert-Extrovert model,” in Econophysics and Sociophysics: Recent Progress and Future Directions, F. Abergel, H. Aoyama, B.K. Chakrabarti, A. Chakraborti, N. Deo, D. Raina, and I. Vodenska, eds. (Springer, 2017).

Reduced Network Extremal Ensemble Learning (RenEEL)

RenEEL is an algorithmic scheme for finding the network partition with maximum modularity, which is a challenging, NP-hard computational problem. It uses a Machine Learning method we call Extremal Ensemble Learning (EEL). The underlying idea of RenEEL is to first find an ensemble of partitions, then use information within the ensemble to efficiently find a new partition that is used to update the ensemble using extremal criteria. The updating continues until a consensus about what the best partition is is reached. Tests on benchmark networks have shown that RenEEL outperforms all other known methods for maximizing modularity.

RenEEL is a powerful and versatile scheme. It uses a conventional algorithm to find network partitions to create and update the ensemble. The C code in the GitHub respository linked to below uses a fast greedy agglomeration algorithm for this purpose, but any conventional algorithm could be used. RenEEL is presented in Scientific Reports 9, 14234 (2019). Please cite that paper if you use the code, or some version of it.

View GitHub Repository