Going back in time to compare evolutionary changes in several thousand generations
of E. coli, a University of Houston (UH) biologist hopes to one day be able to isolate
a bacterial pathogen and predict the likelihood it will become resistant to a particular
antibiotic. A five-year, $967,431 National Science Foundation CAREER Award is allowing associate
professor Timothy Cooper and his team to study the causes and consequences of evolvability
in bacterial populations. Better understanding the genetic and physiological bases
of evolvability is important in vaccine and antibiotic design, as well as in biotechnology.
The ultimate goal is to counter it in the former, while exploiting it in the latter.
“Evolvability is when biological populations have the capacity to adapt to changing
conditions,” Cooper said. “By studying how generations of bacteria evolve over time,
we are learning ways to predict the outcome of the changes and to understand what
drives the differences in the way strains of bacteria evolve. We hope this type of
evolutionary biology research will impact medical care by contributing to the ability
to predict the evolutionary paths of bacterial populations.”
Evolvability plays a crucial role in determining evolutionary winners and losers among
the many variants that arise in any bacterial population in that they are either improved
or become extinct. Through his research, Cooper wants to gain the ability to predict
these winners and losers, because this knowledge gives an element of predictability
to evolution. This would predict such things as antibiotic resistance.
Cooper’s evolvability research with the E. coli began two years ago with the first
petri dish of this fast-growing bacteria. He says they are lucky, because the experiments
are incredibly simple. His team grew the initial bacteria in a petri dish and took
a sample to grow in a test tube with fresh media. That process continued day after
day with the bacterial populations growing and a sample being taken from each test
tube culture. Cooper now has a set of experimental populations that have evolved for
more than 7,000 generations.
“This simplicity is deliberate, so that we can track back what has happened to the
strain,” Cooper said. “Every 500 generations, which is about every two months, we
freeze a sample of each evolving population to create a living fossil record. Because
the frozen samples are revivable, we can compare a past population with its future
population.” The comparative analysis of these past and future populations involves genome sequencing.
It allows Cooper’s research team, which will include a UH postdoctoral fellow, two
graduate students and an undergraduate student, to determine the underlying genetic
changes that have occurred, as well as to look at the effect of those changes.
“At this point, we predict an average of about 15 genetic changes to have occurred
in each population evolved for the 7,000 generations,” Cooper said. “Though that number
may seem small, it’s sufficient enough to increase the bacteria’s growth rate by up
to 50 percent.”
Cooper became interested in studying evolvability because it is a long-standing question
in evolutionary biology as something that can be modeled in most natural populations,
but not measured. While it’s clear from computational models that evolvability can
have a major impact on how evolution unfolds, direct study of the phenomenon is required
to assess just how big an impact it does have. His group’s experimental system with
fast-evolving bacterial populations allows them to design experiments that can look
at it directly.
###
About the University of Houston
The University of Houston is a Carnegie-designated Tier One public research university
recognized by The Princeton Review as one of the nation’s best colleges for undergraduate
education. UH serves the globally competitive Houston and Gulf Coast Region by providing
world-class faculty, experiential learning and strategic industry partnerships. Located
in the nation’s fourth-largest city, UH serves more than 39,500 students in the most
ethnically and culturally diverse region in the country. For more information about
UH, visit the university’s newsroom.
About the College of Natural Sciences and Mathematics
The UH College of Natural Sciences and Mathematics, with 193 ranked faculty and nearly
6,000 students, offers bachelor’s, master’s and doctoral degrees in the natural sciences,
computational sciences and mathematics. Faculty members in the departments of biology
and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics
and physics conduct internationally recognized research in collaboration with industry,
Texas Medical Center institutions, NASA and others worldwide.
To receive UH science news via email, sign up for UH-SciNews.
For additional news alerts about UH, follow us on Facebook and Twitter.