Knowledge Discovery in Databases

Process Model for KDD

Characteristics of KDD

- Interactive
- Iterative
- Procedure to extract knowledge from data
- Knowledge being searched for is
 - implicit
 - previously unknown
 - potentially useful

Is KDD Scientific?

- Application of scientific method to data mining?
- Scientific Method:
 - Define the problem to be solved
 - Formulate a hypothesis
 - Perform one or more experiments to verify or refute the hypothesis
 - Draw and verify conclusions

Step 1. Goal Identification

Clearly define what is to be accomplished

Goal Identification - Suggestions

- State specific objectives
- Include a list of criteria for evaluating success versus failure
- Identify data mining tools and type of data mining task
 - Classification, association, clustering, regression analysis?
- Estimate a project cost
 - These projects can be labor-intensive
 - Will new hardware/software be needed?
- Estimate a project completion/delivery date
- Are there legal issues to consider?
- Maintenance plan

Step 2. Create a Target Data Set

Where is the data?

Create a Target Data Set -Considerations

- Primary sources
 - Data warehouse
 - OLTP systems
 - Flat files
 - Spreadsheets
 - Departmental databases (sometimes Access dbs)

Data in Relational Dbs

- Design is normalized to reduce data redundancy and increase data integrity
- The goal of data mining is to uncover relationships that are revealed through patterns of redundancy
- Thus: Denormalization or views that combine data from multiple tables is the norm

Data Transformation

- One data source uses M for male, F for female
- Another data source uses 1 for male, 2 for female
- If the two data sources are to be combined for mining, consistent representation of attributes is required
- Transformation processes are automated or semi-automated processes that change data for purposed of consistency

Step 3. Data Preprocessing

Data cleaning: Done prior to importing data into data warehouse

Why is Data Cleaning Needed?

- Noise
- Missing data
- Data that is too precise

Noisy Data

- Noise = Random error in attribute values
- Such as
 - Duplicate records
 - Incorrect attribute values

Data Smoothing

- Reduce the number of numerical values for a numeric attribute
 - Rounding
 - Truncating
 - Rounding
- Internal smoothing
 - The algorithm incorporates smoothing
- External smoothing
 - Done prior to the data mining operation

Why Data Smoothing?

- We want to use a classifier that does not support numerical data
- Coarse information about numerical attribute values is sufficient for the problem being solved
- Identify and remove outliers

Missing Data

- What does a missing value mean?
- Lost information

Different Meanings for Missing Data

Missing Value of Salary

- Unemployed?
- Forgot to enter?
- Embarrassed to enter b/c it is so low?
- Embarrassed to enter b/c it is so high?

Missing Value of Age

- Embarrassed to enter b/c too high?
- Forgot to enter?

Problems with Missing Data

- Some algorithms require that there be NO missing data values
- Some algorithms accommodate missing values

Possible Ways to Deal with Missing Data

- Discard records with missing values
 - When not too many are missing
- Replace missing values with the class mean for numeric data
- Replace missing values with attribute values from highly similar instances
- Treat a missing value as a value (i.e. "missing" is an attribute value)

Step 4. Data Transformation

Needed for a number of situations, reasons

Data normalization, data type conversion, attribute and instance selection

Data Normalization

- Not the same thing as database normalization
- Mathematical
- Get data to the same "size" basis across attributes
- E.g., scale data to be a value between 0 and 1

Types of Mathematical Normalization

- Decimal scaling: divide by a power of 10
- Min-Max
- Z-scores
- Logarithmic

Data Type Conversion

• Convert categorical data to numeric (e.g., for neural network algorithms)

Attribute and Instance Selection

- Sometimes you do not want to include all the attributes in the data mining investigation
- Sometimes you do not want to include all the instances in the data mining investigation
- Why? Preferred algorithm may be able to handled fewer attributes or fewer instances. Some attributes do not help the decision being made or the problem being solved; they are irrelevant.

Could Look at Effect of All Attributes and then Decide Which to Use

Algorithm

- S is the set of all possible combinations of attributes from the set of all attributes (N)
- 2. Generate a data mining model M_1 for the first attribute set, S_1 , in S
- 3. Evaluate M₁ based on measures of goodness
- Repeat steps 1 through 3 until all sets in S have been used to build a model and until all those models have been evaluated
- 5. Pick the best model from all possible

Problem with Complete Enumeration Too Many!

combinations _ of _ 10 _ things = $2^{n} - 1 = 1023$

n = 10

Algorithms May or May Not Select Attributes

- Some attributes have little value with respect to predicting membership in the class of interest
- Some algorithms eliminate attributes statistically as part of the data mining process

Algorithms that Do Not

- Neural networks
- Nearest neighbor classifier

By-Hand Attribute Selection

- Eliminate attributes highly correlated with another attribute
 - N -1 out of N of highly correlated attributes are redundant
- Categorical attributes that have the same value for almost all instances can be eliminated
 - Must define "almost all"

 Compute numerical attribute significance based on comparison to class mean and standard deviation values

Create Attributes

- Attributes that do not contribute much to prediction may be combined (mathematically) with other attributes to form a "set" of attributes that is able to predict
 - Ratios of attributes
 - Differences of attributes
 - Percent increase of one attribute w.r.t another Especially important to time-series analysis

Select Instances

- For clustering remove most atypical instances first form clusters then consider the removed instances
- Use instance typicality scores to choose a "best set" of typical instances for the training data set

Step 5. Data Mining

Apply the chosen algorithm/methods to the data

Build a Model

- 1. Choose the training and test data from all the data
- 2. Designate a set of input attributes
- 3. If learning is supervised, choose on or more attributes for output
- 4. Select values for the learning parameters
- Invoke the data mining tool to build a generalized model of the data
- 6. Evaluate the model

Step 6. Interpretation and Evaluation

Is the model acceptable for application to problems outside the realm of a test environment?

Translate the knowledge acquired into terms that users can understand.

Interpretation and Evaluation Techniques

- Statistical analysis
 - Compare performance of models
- Heuristic analysis
 - Heuristic = an experience based rule or technique
 - Class resemblance statistics
 - Sum of squared error (k-means)
- Experimental analysis
 - Experiment with different attribute or instance choices
 - Experiment with algorithm parameter settings
- Human analysis
 - Experts apply experience-based knowledge to assess whether the model is useful

CRISP-DM Process Model for Data Mining

CRoss Industry Standard Process for Data Mining

Phases and Tasks

More Resources for CRISP-DM

- http://www.spss.ch/upload/1107356429 CrispDM1.0.pdf
- <u>http://www.iadis.net/dl/final_uploads/200812P033.pdf</u>

Knowledge Discovery in Databases

Process Model for KDD

