
1

Document Object Model
(DOM): Objects and

Internet & World Wide Web: How to Program
by Deitel and Deitel

Collections
Chapter 12

1

OBJECTIVES

 In this chapter you will learn:
– How to use JavaScript and the W3C

Document Object Model to create dynamic
web pages.p g

– The concept of DOM nodes and DOM trees.

– How to traverse, edit and modify elements in
an XHTML document.

– How to change CSS styles dynamically.

– To create JavaScript animations.

2

Chapter 12 Sections

 12.1 Introduction

 12.2 Modeling a Document: DOM Nodes and Trees

 12.3 Traversing and Modifying a DOM Tree

 12.4 DOM Collections

 12.5 Dynamic Styles

 12.6 Summary of the DOM Objects and Collections

 12.7 Wrap-Up

 12.8 Web Resources

3

2

What is DOM?

 The World Wide Web Consortium (W3C)
defines the Document Object Model
(DOM)

 Platform and language neutral Platform- and language-neutral

 Permits script to access and update the
content, structure, and style of a document

How Do Web Authors Use the
DOM?

 To access everything in the web page
document
– Make numerous content updates

Work with content in separate document– Work with content in separate document
fragments

 Working together with the Dynamic HTML
(DHTML) Object Model

DOM Advantages

 Enhances a Web author's ability to build
and manage complex documents and data

 Moving an object from one part of the
document to another is easydocument to another is easy

3

DOM and Dynamic Effects

 XHTML elements can be treated as
objects with the DOM

 Attributes of XHTML elements can be
treated as properties of those objectstreated as properties of those objects

 Thus, scripting can be used to address
objects through their id attribute, and
property values (attributes) can be
changed at runtime with JavaScript

 Result = “dynamic” effects
7

DHTML and DOM

 Microsoft’s DHTML Object Model provides
access to almost all document elements
and to all attributes of an element

 W3C DOM is consistent with the DHTML W3C DOM is consistent with the DHTML
Object Model in that every element and
every attribute is accessible in script

 W3C DOM is ant evolution from the
DHTML Object Model

Fig. 12.1 |
Demonstration of a
document’s DOM tree
(Part 1 of 4).

 1 <?xml version = "1.0" encoding = "utf-8"?>

 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

 4

 5 <!-- Fig. 12.1: domtree.html -->

 6 <!-- Demonstration of a document's DOM tree. -->

 7 <html xmlns = "http://www.w3.org/1999/xhtml">

 8 <head>

 9 <title>DOM Tree Demonstration</title>

10 </head>

11 <body>

12 <h1>An XHTML Page</h1>

13 <p>This page contains some basic XHTML elements. We use the Firefox

14 DOM Inspector and the IE Developer Toolbar to view the DOM tree p p

15 of the document, which contains a DOM node for every element in

16 the document.</p>

17 <p>Here's a list:</p>

18

19 One

20 Two

21 Three

22

23 </body>

24 </html>

9

4

Fig. 12.1 |
Demonstration of a
document’s DOM tree
(Part 2 of 4).

10

Fig. 12.1 |
Demonstration of a
document’s DOM tree
(Part 3 of 4).

11

Fig. 12.1 |
Demonstration of a
document’s DOM tree
(Part 4 of 4).

12

5

Fig. 12.2 | Basic DOM
functionality (Part 1 of
14).

 1 <?xml version = "1.0" encoding = "utf-8"?>

 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

 4

 5 <!-- Fig. 12.2: dom.html -->

 6 <!-- Basic DOM functionality. -->

 7 <html xmlns = "http://www.w3.org/1999/xhtml">

 8 <head>

 9 <title>Basic DOM Functionality</title>

10 <style type = "text/css">

11 h1, h3 { text-align: center;

12 font-family: tahoma, geneva, sans-serif }

13 p { margin-left: 5%;

14 margin-right: 5%;

15 font-family: arial, helvetica, sans-serif }

16 ul { margin-left: 10% }

{ d i }17 a { text-decoration: none }

18 a:hover { text-decoration: underline }

19 .nav { width: 100%;

20 border-top: 3px dashed blue;

21 padding-top: 10px }

22 .highlighted { background-color: yellow }

23 .submit { width: 120px }

24 </style>

25 <script type = "text/javascript">

26 <!--

27 var currentNode; // stores the currently highlighted node

28 var idcount = 0; // used to assign a unique id to new elements

29

13

Fig. 12.2 | Basic DOM
functionality (Part 2 of
14).

30 // get and highlight an element by its id attribute

31 function byId()

32 {

33 var id = document.getElementById("gbi").value;

34 var target = document.getElementById(id);

35

36 if (target)

37 switchTo(target);

38 } // end function byId

39

40 // insert a paragraph element before the current element

41 // using the insertBefore method

42 function insert()

43 {

44 var newNode = createNewNode(

45 document.getElementById("ins").value);

46 d d i f (d d) 46 currentNode.parentNode.insertBefore(newNode, currentNode);

47 switchTo(newNode);

48 } // end function insert

49

50 // append a paragraph node as the child of the current node

51 function appendNode()

52 {

53 var newNode = createNewNode(

54 document.getElementById("append").value);

55 currentNode.appendChild(newNode);

56 switchTo(newNode);

57 } // end function appendNode

58

14

Fig. 12.2 | Basic DOM
functionality (Part 3 of
14).

59 // replace the currently selected node with a paragraph node

60 function replaceCurrent()

61 {

62 var newNode = createNewNode(

63 document.getElementById("replace").value);

64 currentNode.parentNode.replaceChild(newNode, currentNode);

65 switchTo(newNode);

66 } // end function replaceCurrent

67

68 // remove the current node

69 function remove()

70 {

71 if (currentNode.parentNode == document.body)

72 alert("Can't remove a top-level element.");

73 else

74 {

75 var oldNode = currentNode;

76 switchTo(oldNode.parentNode); (p);

77 currentNode.removeChild(oldNode);

78 }

79 } // end function remove

80

81 // get and highlight the parent of the current node

82 function parent()

83 {

84 var target = currentNode.parentNode;

85

86 if (target != document.body)

87 switchTo(target);

88 else

89 alert("No parent.");

90 } // end function parent

15

6

Fig. 12.2 | Basic DOM
functionality (Part 4 of
14).

91

92 // helper function that returns a new paragraph node containing

93 // a unique id and the given text

94 function createNewNode(text)

95 {

96 var newNode = document.createElement("p");

97 nodeId = "new" + idcount;

98 ++idcount;

99 newNode.id = nodeId;

100 text = "[" + nodeId + "] " + text;

101 newNode.appendChild(document.createTextNode(text));

102 return newNode;

103 } // end function createNewNode

104

105 // helper function that switches to a new currentNode

106 function switchTo(newNode)

{107 {

108 currentNode.className = ""; // remove old highlighting

109 currentNode = newNode;

110 currentNode.className = "highlighted"; // highlight new node

111 document.getElementById("gbi").value = currentNode.id;

112 } // end function switchTo

113 // -->

114 </script>

115 </head>

116 <body onload = "currentNode = document.getElementById('bigheading')">

117 <h1 id = "bigheading" class = "highlighted">

118 [bigheading] DHTML Object Model</h1>

119 <h3 id = "smallheading">[smallheading] Element Functionality</h3>

16

Fig. 12.2 | Basic DOM
functionality (Part 5 of
14).

120 <p id = "para1">[para1] The Document Object Model (DOM) allows for

121 quick, dynamic access to all elements in an XHTML document for

122 manipulation with JavaScript.</p>

123 <p id = "para2">[para2] For more information, check out the

124 "JavaScript and the DOM" section of Deitel's

125

126 [link] JavaScript Resource Center.</p>

127 <p id = "para3">[para3] The buttons below demonstrate:(list)</p>

128 <ul id = "list">

129 <li id = "item1">[item1] getElementById and parentNode

130 <li id = "item2">[item2] insertBefore and appendChild

131 <li id = "item3">[item3] replaceChild and removeChild

132

133 <div id = "nav" class = "nav">

134 <form onsubmit = "return false" action = "">

135 <table>

136 <tr>

137 <td><input type = "text" id = "gbi"

138 value = "bigheading" /></td>

139 <td><input type = "submit" value = "Get By id"

140 onclick = "byId()" class = "submit" /></td>

141 </tr><tr>

142 <td><input type = "text" id = "ins" /></td>

143 <td><input type = "submit" value = "Insert Before"

144 onclick = "insert()" class = "submit" /></td>

145 </tr><tr>

146 <td><input type = "text" id = "append" /></td>

147 <td><input type = "submit" value = "Append Child"

148 onclick = "appendNode()" class = "submit" /></td>

149 </tr><tr>

17

Fig. 12.2 | Basic DOM
functionality (Part 6 of
14).

150 <td><input type = "text" id = "replace" /></td>

151 <td><input type = "submit" value = "Replace Current"

152 onclick = "replaceCurrent()" class = "submit" /></td>

153 </tr><tr><td />

154 <td><input type = "submit" value = "Remove Current"

155 onclick = "remove()" class = "submit" /></td>

156 </tr><tr><td />

157 <td><input type = "submit" value = "Get Parent"

158 onclick = "parent()" class = "submit" /></td>

159 / 159 </tr>

160 </table>

161 </form>

162 </div>

163 </body>

164 </html>

18

7

Fig. 12.2 | Basic DOM
functionality (Part 7 of
14).

19

Fig. 12.2 | Basic DOM
functionality (Part 8 of
14).

20

Fig. 12.2 | Basic DOM
functionality (Part 9 of
14).

21

8

Fig. 12.2 | Basic DOM
functionality (Part 10 of
14).

22

Fig. 12.2 | Basic DOM
functionality (Part 11 of
14).

23

Fig. 12.2 | Basic DOM
functionality (Part 12 of
14).

24

9

Fig. 12.2 | Basic DOM
functionality (Part 13 of
14).

25

Fig. 12.2 | Basic DOM
functionality (Part 14 of 14).

26

Fig. 12.3 | Using the
links collection (Part 1
of 3).

 1 <?xml version = "1.0" encoding = "utf-8"?>

 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

 4

 5 <!-- Fig. 12.3: collections.html -->

 6 <!-- Using the links collection. -->

 7 <html xmlns = "http://www.w3.org/1999/xhtml">

 8 <head>

 9 <title>Using Links Collection</title>

10 <style type = "text/css">

11 body { font-family: arial, helvetica, sans-serif }

12 h1 { font-family: tahoma, geneva, sans-serif;

13 text-align: center }

14 p { margin: 5% }

15 p a { color: #aa0000 }

16 .links { font-size: 14px;

17 text-align: justify;

18 i l ft 10% 18 margin-left: 10%;

19 margin-right: 10% }

20 .link a { text-decoration: none }

21 .link a:hover { text-decoration: underline }

22 </style>

23 <script type = "text/javascript">

24 <!--

25 function processlinks()

26 {

27 var linkslist = document.links; // get the document's links

28 var contents = "Links in this page:\n
| ";

29

30 // concatenate each link to contents

31 for (var i = 0; i < linkslist.length; i++)

27

10

Fig. 12.3 | Using the
links collection (Part 2
of 3).

32 {

33 var currentLink = linkslist[i];

34 contents += "" +

35 currentLink.innerHTML.link(currentLink.href) +

36 " | ";

37 } // end for

38

39 document.getElementById("links").innerHTML = contents;

40 } // end function processlinks

41 // -->

42 </script>

43 </head>

44 <body onload = "processlinks()">

45 <h1>Deitel Resource Centers</h1>

46 <p>Deitel's website contains

47 a rapidly growing

48 list of

49 R C t / id f t i M R 49 Resource Centers on a wide range of topics. Many Resource

50 centers related to topics covered in this book,

51 Internet and World Wide

52 Web How to Program, 4th Edition. We have Resouce Centers on

53 Web 2.0,

54 Firefox and

55 Internet Explorer 7,

56 XHTML, and

57 JavaScript.

58 Watch the list of Deitel Resource Centers for related new

59 Resource Centers.</p>

60 <div id = "links" class = "links"></div>

61 </body>

62 </html>

28

Fig. 12.3 | Using the
links collection (Part 3
of 3).

29

Fig. 12.4 | Dynamic
styles (Part 1 of 2). 1 <?xml version = "1.0" encoding = "utf-8"?>

 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

 4

 5 <!-- Fig. 12.4: dynamicstyle.html -->

 6 <!-- Dynamic styles. -->

 7 <html xmlns = "http://www.w3.org/1999/xhtml">

 8 <head>

 9 <title>Dynamic Styles</title>

10 <script type = "text/javascript">

11 <!--

12 function start()

13 {

14 var inputColor = prompt("Enter a color name for the " + p p p (

15 "background of this page", "");

16 document.body.style.backgroundColor = inputColor;

17 } // end function start

18 // -->

19 </script>

20 </head>

21 <body id = "body" onload = "start()">

22 <p>Welcome to our website!</p>

23 </body>

24 </html>

30

11

Fig. 12.4 | Dynamic styles (Part
2 of 2).

31

Fig. 12.5 | Dynamic
styles used for
animation (Part 1 of 7).

 1 <?xml version = "1.0" encoding = "utf-8"?>

 2 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 3 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

 4

 5 <!-- Fig. 12.5: coverviewer.html -->

 6 <!-- Dynamic styles used for animation. -->

 7 <html xmlns = "http://www.w3.org/1999/xhtml">

 8 <head>

 9 <title>Deitel Book Cover Viewer</title>

10 <style type = "text/css">

11 .thumbs { width: 192px;

12 height: 370px;

13 padding: 5px;

14 float: left }

15 .mainimg { width: 289px;

16 padding: 5px;

17 float: left } }

18 .imgCover { height: 373px }

19 img { border: 1px solid black }

20 </style>

21 <script type = "text/javascript">

22 <!--

23 var interval = null; // keeps track of the interval

24 var speed = 6; // determines the speed of the animation

25 var count = 0; // size of the image during the animation

26

27 // called repeatedly to animate the book cover

28 function run()

29 {

30 count += speed;

32

Fig. 12.5 | Dynamic
styles used for
animation (Part 2 of 7).

31

32 // stop the animation when the image is large enough

33 if (count >= 375)

34 {

35 window.clearInterval(interval);

36 interval = null;

37 } // end if

38

39 var bigImage = document.getElementById("imgCover");

40 bigImage.style.width = .7656 * count + "px";

41 bigImage.style.height = count + "px";

42 } // end function run

43

44 // inserts the proper image into the main image area and

45 // begins the animation

46 function display(imgfile)

47 { {

48 if (interval)

49 return;

50

51 var bigImage = document.getElementById("imgCover");

52 var newNode = document.createElement("img");

53 newNode.id = "imgCover";

54 newNode.src = "fullsize/" + imgfile;

55 newNode.alt = "Large image";

56 newNode.className = "imgCover";

57 newNode.style.width = "0px";

58 newNode.style.height = "0px";

59 bigImage.parentNode.replaceChild(newNode, bigImage);

60 count = 0; // start the image at size 0

33

12

Fig. 12.5 | Dynamic
styles used for
animation (Part 3 of 7). 61 interval = window.setInterval("run()", 10); // animate

62 } // end function display

63 // -->

64 </script>

65 </head>

66 <body>

67 <div id = "mainimg" class = "mainimg">

68 <img id = "imgCover" src = "fullsize/iw3htp4.jpg"

69 alt = "Full cover image" class = "imgCover" />

70 </div>

71 <div id = "thumbs" class = "thumbs" >

72 <img src = "thumbs/iw3htp4.jpg" alt = "iw3htp4"

73 onclick = "display('iw3htp4.jpg')" />

74 <img src = "thumbs/chtp5.jpg" alt = "chtp5"

75 onclick = "display('chtp5.jpg')" /> p y(p jpg) /

76 <img src = "thumbs/cpphtp6.jpg" alt = "cpphtp6"

77 onclick = "display('cpphtp6.jpg')" />

78 <img src = "thumbs/jhtp7.jpg" alt = "jhtp7"

79 onclick = "display('jhtp7.jpg')" />

80 <img src = "thumbs/vbhtp3.jpg" alt = "vbhtp3"

81 onclick = "display('vbhtp3.jpg')" />

82 <img src = "thumbs/vcsharphtp2.jpg" alt = "vcsharphtp2"

83 onclick = "display('vcsharphtp2.jpg')" />

84 </div>

85 </body>

86 </html>

34

Fig. 12.5 | Dynamic
styles used for
animation (Part 4 of 7).

35

Fig. 12.5 | Dynamic
styles used for
animation (Part 5 of 7).

36

13

Fig. 12.5 | Dynamic
styles used for
animation (Part 6 of 7).

37

Fig. 12.5 | Dynamic
styles used for
animation (Part 7 of 7).

38

Fig. 12.6 | W3C
Document Object
Model.

39

14

Fig. 12.7 | Objects and
collections in the W3C
Document Object
Model (Part 1 of 2).

Object or
collection

Description

Objects

window Represents the browser window and provides access to the
document object contained in the window. Also contains
history and location objects.

document Represents the XHTML document rendered in a window. The
document object provides access to every element in the
XHTML document and allows dynamic modification of the
XHTML document. Contains several collections for accessing all
elements of a given typeelements of a given type.

body Provides access to the body element of an XHTML document.

history Keeps track of the sites visited by the browser user. The object
provides a script programmer with the ability to move forward
and backward through the visited sites.

location Contains the URL of the rendered document. When this object is
set to a new URL, the browser immediately navigates to the new
location.

40

Fig. 12.7 | Objects and
collections in the W3C
Document Object
Model (Part 2 of 2).

Object or
collection

Description

Collections

anchors Collection contains all the anchor elements (a) that have a name
or id attribute. The elements appear in the collection in the
order in which they were defined in the XHTML document.

forms Contains all the form elements in the XHTML document. The
elements appear in the collection in the order in which they were
defined in the XHTML document.

images C t i ll th i l t i th XHTML d t Thimages Contains all the img elements in the XHTML document. The
elements appear in the collection in the order in which they were
defined in the XHTML document.

links Contains all the anchor elements (a) with an href property.
The elements appear in the collection in the order in which they
were defined in the XHTML document.

41

Document Object Model
(DOM): Objects and

Internet & World Wide Web: How to Program
by Deitel and Deitel

Collections
Chapter 12

42

