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Abstract. Learning to predict significant events from sequences of data
with categorical features is an important problem in many application ar-
eas. We focus on events for system management, and formulate the prob-
lem of prediction as a classification problem. We perform co-occurrence
analysis of events by means of Singular Value Decomposition (SVD) of
the examples constructed from the data. This process is combined with
Support Vector Machine (SVM) classification, to obtain efficient and ac-
curate predictions. We conduct an analysis of statistical properties of
event data, which explains why SVM classification is suitable for such
data, and perform an empirical study using real data.

1 Introduction

Many real-life scenarios involve massive sequences of data described in terms of
categorical and numerical features. Learning to predict significant events from
such sequences of data is an important problem useful in many application areas.

For the purpose of this study, we will focus on system management events.
In a production-network, the ability of predicting specific harmful events can
be applied for automatic real-time problem detection. In our scenario, a com-
puter network is under continuous monitoring. Our data reveals that one month
of monitoring of a computer network with 750 hosts can generate over 26,000
events, with 164 different types of events. Such high volume of data makes nec-
essary the design of efficient and effective algorithms for pattern analysis.

We take a classification approach to address the problem of event data pre-
diction. The historical sequence of data provides examples that serve as input to
the learning process. Our settings allow to capture temporal information through
the use of adaptive-length monitor windows. In this scenario, the main challenge
consists in constructing examples that capture information that is relevant for
the associated learning system. Our approach to address this issue has its foun-
dations in the information retrieval domain.

Latent Semantic Indexing (LSI) [5] is a method for selecting informative
subspaces of feature spaces. It was developed for information retrieval to reveal
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semantic information from co-occurrences of terms in documents. In this pa-
per we demostrate how this method can be used for pattern discovery through
feature selection for making predictions with temporal sequences. The idea is
to start with an initial rich set of features, and cluster them based on feature
correlation. The finding of correlated features is carried out from the given set of
data by means of SVD. We combine this process with SVM, to obtain efficient
and accurate predictions. The resulting classifier, in fact, is expressed in terms
of a reduced number of examples, which lie in the feature space constructed
through feature selection. Thereby, predictions can be performed efficiently. Be-
sides performing comparative studies, we also take a more theoretical perspective
to motivate why SVM learning method is suitable for our problem. Following
studies conducted for text data [8], we discover that the success of SVM in
predicting events has its foundations on statistical properties of event data.

2 Problem Settings

We assume that a computer network is under continuous monitoring. Such mon-
itoring process produces a sequence of events, where each event is a timestamped
observation described by a fixed set of categorical and numerical features. Specif-
ically, an event is characterized by four components: the time at which the event
occurred, the type of the event, the host that generated the event, and the sever-
ity level. The severity component can assume five different levels: {harmless,
warning, minor, critical, fatal}.

We are interested in predicting events with severity either critical or fatal,
which we call target events. Such events are rare, and therefore their occurrence
is sparse in the sequence generated by the monitoring process. Our goal is then
to identify situations that lead to the occurrence of target events. Given the
current position in time, by observing the monitoring history within a certain
time interval (monitor window), we want to predict if a given target event will
occur after a warning interval.

In our formulation of the problem, as we shall see, events will be characterized
by their timestamp and type components. In this study, the host component is
ignored (some hosts generate too few data). Therefore, we will denote events as
two dimensional vectors e =(timestamp, type). We will use capital letter T to
denote each target event, which is again a two dimensional vector. We assume
that the severity level of target events is either critical or fatal.

3 Related Work

Classical time series analysis is a well studied field that involves identifying pat-
terns (trend analysis), identifying seasonal changes, and forecasting [2]. There
exist fundamental differences between time series and event data prediction that
render techniques for time series analysis unappropriate in our case. A time series
is, in fact, a sequence of real numbers representing measurements of a variable
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taken at equal time intervals. Techniques developed for time series require nu-
merical features, and do not support predicting specific target events within a
time frame. The nature of event data is fundamentally different. Events are char-
acterized by categorical features. Moreover, events are recorded as they occur,
and show different inter-arrival times. Correlations among events are certainly
local in time, and not necessarily periodic. New models that capture the tempo-
ral nature of event data are needed to properly address the prediction problem
in this context.

The problem of mining sequences of events with categorical features has been
studied by several researchers [10,16]. Here the focus is on finding frequent sub-
sequences. [16] systematically searches the sequence lattice spanned by the sub-
sequence relation, from the most general to the most specific frequent sequences.
The minimum support is a user defined parameter. Temporal information can
be considered through the handling of a time window.

[10] focuses on finding all frequent episodes (from a given class of episodes),
i.e., collections of events occurring frequently close to each other. Episodes are
viewed as partially ordered sets of events. The width of the time window within
which the episode must occur is user defined. The user also specifies the number
of times an event must occur to qualify as frequent. Once episodes are detected,
rules for prediction can be obtained. Clearly, the identified rules depend on the
initial class of episodes initially considered, and on the user defined parameters.

Our view of target events and monitor periods is akin to the approach taken
in [14], and in [15]. [14] adopts a classification approach to generate a set of rules
to capture patterns correlated to classes. The authors conduct a search over the
space of monomials defined over boolean vectors. To make the search system-
atic, pruning mechanisms are employed, which necessarily involve parameter and
threshold tuning.

Similarly, [15] sets the objective of constructing predictive rules. Here, the
search for prediction patterns is conducted by means of a genetic algorithm
(GA), followed by a greedy procedure to screen the set of pattern candidates
returned by the GA.

In contrast, in this work, we fully exploit the classification model to solve
the prediction problem. We embed patterns in examples through co-occurrence
analysis of events in our data; by doing so we avoid having to search in a space
of possible solutions, and to conduct post-processing screening procedures. We
are able to conduct the classification approach in a principled manner that has
its foundations on statistical properties of event data.

4 Prediction as Classification

The overall idea of our approach is as follows. We start with an initial rich
set of features which encodes information relative to each single event type; we
then cluster correlated components to derive information at pattern level. The
resulting feature vectors are used to train an SVM. The choice of conducting
SVM classification is not merely supported by our empirical study, but finds its
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Input: Sequence of events {e} (m different event types occur in {e}); target event
T.
Feature Construction:
(1) Let n = 2∗(number of occurrences of T in {e});
(2) Construct a training set S = {li, yi}n

i=1, with li = (li1, li2, . . . , lim)
t ∈ �m, for

1 ≤ i ≤ n, and yi ∈ {−1, 1} (li is a column vector).
Feature Selection:
(1) Consider the matrix D = (l1, l2, . . . , ln);
(2) Decompose D into the product D = UΣV t;
(3) Let σ̄ be the average value of singular values σi;
(4) Set k = number of singular values above σ̄;
(5) Construct the projection operator P = U t

k, where Uk is the matrix consisting of
the k columns of U corresponding to the k largest singular values;
(6) ∀ li ∈ S compute l̂i = (P li) ∈ �k; we obtain the new training set: Ŝ = {̂li, yi}n

i=1.
Classification:
(1) Train an SVM using the training set Ŝ.
Output: f(x) =

∑
i
αiyiK (̂li,x)− b.

Fig. 1. Summary of the SVD-SVM algorithm

foundation on the structure and on the distribution properties of our data, as we
will discuss in section 6. In figure 1 we summarize the whole algorithm, which
we call SVD-SVM.

4.1 Feature Construction

We generate a training set of positive and negative examples for each target
event T. Specifically, we generate a positive example for each occurrence of T.
We do so by observing the monitoring history within a certain time interval,
which we call monitor window, preceding the occurrence of T, and preceding
a warning window. The warning window represents the leading time useful to
take actions for preventing the target event from happening during the on-line
prediction process.

We proceed similarly for the construction of negative examples, monitoring
the history of events within windows which are far from occurrences of the
target event along the time axis. The rationale behind this choice is to try to
minimize the overlapping of features between positive and negative examples.
This strategy is a heuristic, and other approaches may be valid as well.

Our first step toward feature selection involves the mapping of temporal
sequences (i.e., monitor windows) into vectors l ∈ �m, whose dimensionality m
is given by the number of event types in the data. Each component li of l encodes
the information relative to event ei with respect to the monitor window under
consideration. In general, the value for li could be a function of the timestamps
of ei. Alternatively, li could simply encode the number of occurrences, or just
the existence of the corresponding event type ei, within the monitor window.
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4.2 Feature Selection

Let us assume we have m different event types, and we take into consideration n
monitor windows to generate both positive and negative examples. Then, the
feature construction step gives a training set of n m-dimensional vectors: l1, l2,
. . ., ln, with li ∈ �m for 1 ≤ i ≤ n. We denote each li as a column vector:
li = (li1, li2, . . . , lim)t. We can then represent the vectors in the training set as
a matrix: D = (l1 l2 . . . ln), whose rows are indexed by the event types, and
whose columns are indexed by the training vectors. We call D the event-by-
window matrix. Its dimensions are m × n.

We extract relevant information from the given training set by performing
the SVD of the event-by-window matrix. The vectors are projected into the
subspace spanned by the first k singular vectors of the feature space. Hence, the
dimension of the feature space is reduced to k, and we can control this dimension
by varying k. This process allows us to obtain a vector space in which distances
reflect pattern-context information.

Using SVD, we decompose the event-by-window matrix D into the product
D = UΣV t, where U and V are square orthogonal matrices, and Σ has the same
dimensions as D, but is only non-zero on the leading diagonal. The diagonal
contains the (positive) singular values in decreasing order, σ1 ≥ σ2 . . . ≥ σk ≥
. . . ≥ 0 (we denote with σ̄ their average value). The first k columns of U span
a subspace of the space of event vectors which maximizes the variation of the
examples in the training set. By using this subspace as a feature space, we force
the co-occurring event types to share similar directions.

The number of features is reduced; the level of grouping controls the perfor-
mance, and is determined by the choice of k. In our experiments we exploit the
pattern similarity information that characterizes the data by setting k equal to
the number of singular values which are above the average σ̄, in correspondence
of the monitor window length that minimizes the error rate (see section 7).

The projection operator onto the first k dimensions is given by P = U t
k,

where Uk is the matrix consisting of the first k columns of U . We can then project
the vectors li into the selected k dimensions by computing l̂i = (P li) ∈ �k. This
gives us the new k-dimensional vectors l̂i, for 1 ≤ i ≤ n. Assuming we are
interested in predicting c target events, the feature selection process produces c
training sets: {̂li, yi}n

i=1. We use each of these sets to train an SVM, obtaining c
classifiers SV M1, SV M2, . . ., SV Mc.

The meaning of feature selection is twofold. Correlated dimensions are ex-
plicitely embedded in the induced space; they represent relevant features for
the successive classification step. Thereby, higher prediction accuracy can be
achieved. Furthermore, since the dimensionality of the induced feature space
is reduced, this phase makes classification (and prediction) more efficient. Of
course, the SVD process itself has a cost, but it is performed only once and
off-line. For on-line updates, incremental techniques have been developed for
computing SVD in linear time in the number of vectors [4,6]. [9] reduces this
linear dependence by using a much smaller aggregate data set to update SVD.
Furthermore, new optimization approaches that specifically exploit the struc-
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ture of the SVM have been introduced for scaling up the learning process [3,12].
Techniques have been developed to also extend the SVM learning algorithm in
an incremental fashion [11,13].

5 SVMs for Text Classification

The rationale for using SVMs relies on the fact that event and text data share
important statistical properties, that can be tied to the performance of SVMs.
Here we discuss such properties for text data, and then show that similar ones
hold for event data also.

SVMs have been successfully applied for text classification. In [8], a the-
oretical learning model that connects SVMs with the statistical properties of
text classification tasks has been presented. This model explains why and when
SVMs perform well for text classification. The result is an upper bound connect-
ing the expected generalization error of an SVM with the statistical properties
of a particular text classification task.

The most common representation for text classification is the bag-of-words
model, in which each word of the language corresponds to an attribute. The
attribute value is the number of occurrences of that word in a document. It
has been shown [8] that such text classification tasks are characterized by the
following properties: High Dimensional Feature Space. Many text classification
tasks have more than 30,000 features. Heterogenous Use of Words. There is gen-
erally not a small set of words or a single word that sufficiently describes all
documents with respect to the classification task. High Level of Redundancy.
Most documents contain not only one, but multiple features indicating its class.
Sparse Document Vectors. From the large feature space, only a few words oc-
cur in a single document. Frequency Distribution of Words follows Zipf’s Law.
This implies that there is a small number of words that occurs very frequently
while most words occur very infrequently [17]. It is possible to connect these
properties of text classification tasks with the generalization performance of an
SVM [8]. In particular, the listed properties necessarily lead to large margin sep-
aration. Moreover, large margin, combined with low training error, is a sufficient
condition for good generalization accuracy.

6 Statistical Properties of Event Data

Here we pose the following question: do properties similar to those discussed in
section 5 hold for event data also? In order to answer it, we analyzed the fre-
quency distributions of event types for positive and negative examples of training
sets relative to different target events. For lack of space, we report the results ob-
tained for only one target event: CRT URL Timeout (coded as target event 2),
which indicates that a web site is unaccessible. We have obtained similar results
for the other target events. The data used are real event data from a production
computer network. The data shows 164 different event types, numbered from 1
to 164. Therefore, each example is a 164-dimensional feature vector, with one
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Fig. 2. Frequency of Event Types 1-82 (left) and 83-164 (right) in positive and
negative examples for prediction of Target Event 2

component per event type. Each component encodes the existence of the corre-
sponding event type. The training set for event type 2 contains 460 examples,
with roughly the same number of positive and negative instances.

In figure 2, we plot the frequency value of each event type for both positive
and negative examples in the training set relative to target event 2. We observe
that many event types have very low or zero frequency value, indicating that the
164-dimensional examples are sparse feature vectors. Furthermore, we observe
a significant gap in frequency levels between positive and negative examples in
correspondence of multiple event types. This shows positive evidence for redun-
dancy of features indicating the class of examples. Also, given the frequency
levels of some relevant features, it is highly likely that a significant number of
positive examples does not share any of these event types, showing a hetero-
geneous presence of event types. In order to test the Zipf’s law distribution
property, in figure 3 we show the rank-frequency plot for the positive examples
relative to target event 2. A similar plot was obtained for the negative examples.
The plot shows the occurrence frequency versus the rank, in logarithmic scales.
We observe a Zipf-like skewed behavior, very similar to the one obtained for
rank-frequency plots of words [1].

We observe that the Zipf distribution does not perfectly fit the plot in figure 3.
In fact, in log-log scales, the Zipf distribution gives a straight line, whereas our
plot shows a top concavity. It is interesting to point out that the same “parabola”
phenomenon has been observed with text data also [1]. In [8], the assumption
that term frequencies obey Zipf’s law is used to show that the Euclidean length
of document vectors is small for text-classification tasks. This result in turns con-
tributes to bound the expected generalization error tightly. The characteristic
that feature vectors are short still holds under the Zipf-like skewed behavior ob-
served for our data. These results provide experimental evidence that statistical
properties that hold for text data are valid for event data also. As a consequence,
similar theoretical results [8] derived for text data also apply for event data. This
establishes the foundations for conducting SVM classification.
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Fig. 3. Rank-frequency plot in logarithmic-logarithmic scales, positive examples
for prediction of Target Event 2

7 Experiments on Real Data

In the following we compare different classification methods using real data.
We compare the following approaches: (1) SVD-SVM classifier. We used
SV M light [7] with radial basis kernels to build the SVM classifier. We opti-
mized the value of γ in K(xi,x) = e−γ‖xi−x‖2

, as well as the value of C for the
soft-margin classifier, via cross-validation over the training data. (2) SVM clas-
sifier in original feature space. Again we used SV M light with radial basis kernels,
and optimized the values of γ and C via cross-validation over the training data.
(3) C4.5 decision tree method in original and reduced feature spaces.

We used real event data from a production computer network. The moni-
toring process samples events at equal time intervals of one minute length. The
characteristics of the data are as follows: the time span covered is of 30 days;
the total number of events is 26,554; the number of events identified as critical
is 692; the number of events identified as fatal is 16; the number of hosts is 750;
the number of event types is 164.

We focus on the prediction of two critical event types: CRT URL Timeout
(coded as type 2), which indicates that a web site is unaccessible, and
OV Node Down (coded as type 94), which indicates that a managed node is
down. This choice has been simply determined by the fact that the data contain
a reasonable number of occurrences for these two critical event types. In par-
ticular, we have 220 occurrences of event type 2, and 352 occurrences of event
type 94. We have generated, roughly, an equal number of positive and negative
examples for each of the two event types. Specifically, we have constructed 460
examples (220 positive and 240 negative) for event type 2, and 702 examples
(352 positive and 350 negative) for event type 94. We have performed 10 2-fold
cross-validation to compute error rates.

Feature Construction Processes. We have first conducted an experiment
to compare different feature construction processes: (1) existence: encodes the
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Table 1. Prediction of Event Type 2 using SVD-SVM. Performance results for
three different feature construction processes

error(%) std dev Sel.Dim.

existence 10.6 0.3 61
count 14.7 0.4 40
temporal 15.1 0.4 66

existence of each event type; (2) count: encodes the number of occurrences of
each event type; (3) temporal: encodes times of occurrences of each event type.

To encode times of occurrences, we partition the monitor window into time
slots. Then, for each event type, we generate a binary string with one digit
for each time slot: the digit value is one if the event type occurs within the
corresponding time slot; otherwise it is zero. We then translate the resulting
binary sequence into a decimal number, that uniquely encodes the timestamps
(time slots) of the correspondent event type. The collection of the resulting m
numbers gives the feature vector.

The results shown in table 1 have been obtained applying the SVD-SVM
technique for prediction of event type 2, using a 30 minutes length monitor win-
dow and a 5 minutes length warning window. The three columns show: error
rate, standard deviation, and number of selected dimensions. The best perfor-
mance has been obtained when existence is used as feature construction process.
The same trend has been observed for target event 94 also. The fact that ig-
noring the temporal distribution of events within the specified monitor window
gives better results, while surprising at first, may be due to patterns that repeat
under different event type permutations. Furthermore, patterns may show some
variability in number of occurrences of some event types. This explains the su-
periority of the existence approach versus the count technique. Based on these
results, we have adopted the existence feature construction process, and all the
results presented in the following make use of such scheme.

Monitor Window Length: Second, we have performed an experiment to de-
termine the proper length of monitor windows. The objective of this experiment
is to determine to which extent a target event is temporally correlated to previ-
ous events.

In figure 4 (left) we plot the average error rate as a function of the monitor
window length, for target events 2 and 94. We have tested monitor windows
of length that range from 5 up to 100 minutes (at intervals of 5 minutes). We
have used a 5 minutes length warning window. We observe the same trend for
both target events, but the extent of correlation with the monitoring history is
different for the two. The error rate for event type 2 shows a significant drop
for monitor windows of length up to 30 minutes. Then, the error rate slowly
decreases, and reaches a minimum at 95 minutes. For event type 94 the drop
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Fig. 4. Prediction of Event Types 2 and 94 using the SVD-SVM technique:
(left) average error rate (right) number of selected dimensions as a function of
the length of the monitor window

occurs more rapidly within 15 minutes; then, the error keeps decreasing, and
reaches a minimum at 45 minutes.

Interestingly, figure 4 (right) shows an almost mirrored behavior. Here we
plot the number of selected dimensions as a function of the monitor window
length. In our experiments, the number of selected dimensions corresponds to
the number of singular values above the average σ̄. We observe that the number
of such dimensions grows as the length of the monitor window increases, and
reaches a stable point when the error rate reaches a minimum (95 minutes for
event type 2, and 45 minutes for event type 94).

These results show a nice correlation between the error rate, the number
of selected dimensions, and the length of monitor windows: by customizing the
length of the monitor window, we are able to capture the useful information,
expressed in terms of selected dimensions, i.e., patterns that predict the target,
to minimize the prediction error. We emphasize that, although the choice of
setting k equal to the number of singular values above the average σ̄ (figure 1)
is a heuristic, we are still able of estimating the intrinsic dimensionality of the
data by letting k grow to the value that gives the optimal error rate.

Off-line and On-line Prediction. In table 2 we report the results obtained
for the three methods we are comparing. The four columns show: error rate (with
standard deviation), error rates for positive and negative examples, and number
of selected dimensions. We report the results obtained with C4.5 over the whole
feature space, omitting the results obtained over the reduced space, since C4.5
always performed poorly in the second case. For the monitor window length,
we have used the optimal values determined in the previous experiment. SVD-
SVM and SVM show similar results in both cases, with SVD-SVM selecting 68
(out of 164) dimensions in the first case and 72 in the second. C4.5 is the worst
performer in both cases.

We present next the results we have obtained for prediction in an on-line
setting. We consider the data preceding a certain timestamp to train a classifier;
then we use such classifier for on-line prediction over the remaining time span. To
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Table 2. Prediction of Event Types 2 (top 3 rows) and 94

error error+ error- Sel.Dim.

SVD-SVM 6.8 ± 0.2 4.9 8.3 68
C4.5 7.7 ± 1.0 4.8 10.2 164
SVM 7.0 ± 0.2 4.9 8.9 164

SVD-SVM 7.7 ± 0.3 8.0 7.3 72
C4.5 9.3 ± 1.0 9.8 8.2 164
SVM 7.6 ± 0.3 8.4 6.8 164

Table 3. On-line prediction of Event Types 2 (top 3 rows) and 94

error error+ error-

SVD-SVM 8.6 12.5 8.5
C4.5 8.4 12.5 8.4
SVM 9.8 12.5 9.8

SVD-SVM 7.2 3.0 7.2
C4.5 34.9 2.4 35.1
SVM 6.6 3.0 6.7

simulate an on-line prediction setting, we consider sliding windows (positioned
at each event) of length 95 minutes for event type 2, and of length 45 for event
type 94. A warning window of 5 minutes is considered for training in both cases.
Therefore, the positive examples for on-line testing are those with an occurrence
of the target event within the fifth and sixth minute following the end of the
monitor window.

Table 3 shows the results. The number of positive and negative examples used
for training is 124 and 160, respectively, for event type 2, and 179, 222 for event
type 94. The number of positive and negative examples used for on-line testing
is 64 and 9491, respectively, for event type 2, and 165, 19655 for event type 94.
Clearly, since target events are rare, the number of tested negative examples is
much larger than the positives. We observe that a trivial classifier that always
predicts no flaw will make a smaller number of mistakes than SVD-SVM, but it
is useless since its recall will always be zero.

On target event 2, all three methods show a similar performance, with SVM
being slightly worst (due to a larger number of false positives). On target event
94, SVD-SVM and SVM show a similar performance, whereas C4.5 performs
poorly in this case, due to a large number of false positives. By analyzing the
tree produced, we see that C4.5 has correctly chosen event type 94 as predictor
at the top of the tree (in fact, we did observe that event type 94 is the most
relevant predictor of itself). On the other hand, the subtree following the arc



136 Carlotta Domeniconi et al.

labelled 0 contains event types which are not discriminant; they cause the false
positives.

8 Conclusions

We have presented a framework to fully exploit the classification model for event
prediction. The accuracy achieved by SVD-SVM throughout our experiments
validate the effectiveness of selected features. We have also established the foun-
dations for conducting SVM classification based on statistical properties of event
data.
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