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A B S T R A C T 

Physics-informed neural networks have emerged as a coherent framework for building predictive models that combine statistical 
patterns with domain knowledge. The underlying notion is to enrich the optimization loss function with known relationships 
to constrain the space of possible solutions. Hydrodynamic simulations are a core constituent of modern cosmology, while the 
required computations are both e xpensiv e and time-consuming. At the same time, the comparatively fast simulation of dark 

matter requires fewer resources, which has led to the emergence of machine learning algorithms for baryon inpainting as an 

active area of research; here, recreating the scatter found in hydrodynamic simulations is an ongoing challenge. This paper 
presents the first application of physics-informed neural networks to baryon inpainting by combining advances in neural network 

architectures with physical constraints, injecting theory on baryon conv ersion efficienc y into the model loss function. We also 

introduce a punitive prediction comparison based on the Kullback–Leibler divergence, which enforces scatter reproduction. By 

simultaneously extracting the complete set of baryonic properties for the SIMBA suite of cosmological simulations, our results 
demonstrate impro v ed accurac y of baryonic predictions based on dark matter halo properties and successful reco v ery of the 
fundamental metallicity relation, and retrieve scatter that traces the target simulation’s distribution. 
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 I N T RO D U C T I O N  

he Lambda cold dark matter model, coined the standard model 
f cosmology due to its widespread adoption and explanatory 
ower, plays a crucial role in modern cosmology and astrophysics. 
alaxy formation and evolution occur within virialized structures 

esulting from density perturbations in the early Universe, subjected 
o gravitational collapse (Frenk & White 2012 ).This leads to large- 
cale structure in the form of a cosmic web evolving from a somewhat
mooth starting point, with dark matter haloes as gravitationally 
ound o v erdensities of the postulated main contributor to the matter
ontent of the Universe. 

As galaxies form through the condensation of cooling gas within 
hese haloes, their resulting baryonic properties share a natural 
elationship with the dark matter accumulations they live in (see, 
or example, Rees & Ostriker 1977 ; Blumenthal et al. 1984 ). As
ark matter distributions are often sufficient to extract cosmological 
arameters of interest, N -body simulations restricted to simulating 
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ark matter particles or grids through gravitational interactions are 
ommon in cosmology (Springel et al. 2005 ; Boylan-Kolchin et al.
009 ; Klypin, Trujillo-Gomez & Primack 2011 ; Riebe et al. 2013 ;
otter, Stadel & Teyssier 2017 ). Options in this regard include direct
umerical integration and the inclusion of a scale factor to model
he expansion of the Universe via general relativistic effects. These 
imulations are computationally cheap and fast to run compared to 
ore complex alternatives (Efstathiou et al. 1985 ). 
In contrast to the success of large-scale structure, modelling 

alaxies through N -body simulations has historically been more 
ifficult, as baryonic physics plays a vital role through non-linear and
issipative processes at this level of granularity (Somerville & Dav ́e
015 ). At the same time, the rele v ance of the baryonic properties
f galaxies is evident by the reason dark matter bears its name;
irect observations in the electromagnetic spectrum rely on baryonic 
rocesses emitting such radiation. Methods to include the luminous 
aryonic matter in our simulations are thus required to enable 
omparisons to these observations in the first place. 

Multiple avenues to circumvent these limitations have been de- 
eloped. These include abundance matching, which connects the 
alo mass to a range of baryonic properties through the stellar
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1 This might be a constant source of frustration for some readers of papers 
on these topics, as decision trees and merger trees are, apart from technically 
both having a tree-like structure, two entirely different concepts. 
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ass. Ho we ver, this traditionally requires the assumption of the
reservation of rank ordering in mass (see, for example, descriptions
n Wetzel & White 2010 ; Campbell et al. 2018 ), although this has
een superseded by an earlier shift towards the inclusion of intrinsic
catter as well as a preference for ordering by velocity instead of
ass (Reddick et al. 2013 ). Recent models, ho we ver, do not solely

ely on mass as the halo proxy but instead use a combination of
actors and introduce scatter for a non-monotonic relation (Lehmann
t al. 2016 ; Stiskalek et al. 2022 ). As an alternative to the rank
rdering of all galaxies without separating central and satellite
alaxies, halo occupancy distribution modelling makes assumptions
bout the satellite distributions and uses halo mass functions as an
nput (Berlind & Weinberg 2002 ). 

The penultimate step in this evolution of complexity is semi-
nalytical models, which incur a heavier computational burden as
 trade-off for using a complete physical framework. The issue these
odels face is the number of free parameters for which constraints

ave to be found (see, for example, Somerville & Primack 1999 ;
u et al. 2014 ). These include, but are not limited to, GALFORM as
resented in Cole et al. ( 2000 ) and Baugh et al. ( 2018 ), GALICS and
ALICS 2.0 (see Hatton et al. 2003 ; Cattaneo et al. 2017 ), and SAGE

Croton et al. 2016 ). Simpler analytical formalisms for the evolution
f baryonic galaxy properties exist, for example the bathtub model
y Bouch ́e et al. ( 2010 ) and the reservoir model by Krumholz &
ekel ( 2012 ), as well as the equilibrium model (Dav ́e, Finlator &
ppenheimer 2012 ; Saintonge et al. 2013 ; Mitra, Dav ́e & Finlator
015 ; Mitra et al. 2017 ). 
Hydrodynamic simulations, which require the most computational

esources and time, are generally considered the gold standard of an
b initio approach to galaxy formation and evolution (Vogelsberger
t al. 2020 ). P article-based and grid-based methods e xist based on
he foundation that baryonic matter can be modelled by treating gas
s an ideal fluid. The former rely on computations of discrete masses,
r particles, while the latter split the simulation volume into discrete
paces (Dolag et al. 2008 ; Somerville & Dav ́e 2015 ). Influential
ecent hydrodynamic simulations include, for example, ILLUSTRIS

nd ILLUSTRISTNG (see Genel et al. 2014 ; Pillepich et al. 2018 ),
AGLE as introduced in Schaye et al. ( 2015 ), and HORIZONAGN by
ubois et al. ( 2016 ), as well as MUFASA and its successor SIMBA , the

atter of which is used for the lion’s share of our experiments and is
escribed in more detail in Section 2.1 (Dav ́e, Thompson & Hopkins
016 ; Dav ́e et al. 2019 ). 
In recent years, the physical sciences have experienced an

xponentially rising interest in applying machine learning (ML)
lgorithms (Carleo et al. 2019 ). These developments include the
cceleration of hydrodynamic simulations of galaxy formation and
volution, with Kamdar, Turk & Brunner ( 2016 ) providing one of
he first examples by predicting baryonic properties in ILLUSTRIS

sing extremely randomized trees, commonly abbreviated as ‘extra
rees’, an ensemble model based on decision trees. This heralded the
ominance of tree-based ensembles in related research, including
garwal, Dav ́e & Bassett ( 2018 ) for MUFASA and Lo v ell et al. ( 2021 )

or EAGLE , as well as Jo & Kim ( 2019 ), McGibbon & Khochfar
 2022 ), and de Santi et al. ( 2022 ) for ILLUSTRISTNG . 

While these works apply tree-based ensembles, de Santi et al.
 2022 ) also compare other algorithms such as k -nearest neighbours,
ight gradient-boosting machines, and feed-forward neural networks,
nd combine them with a linear regressor for impro v ed predictions.
imilarly, de Andres et al. ( 2022 ) use random forests, feed-forward
eural networks, and natural and extreme gradient boosting on THE

HREE HUNDRED data described by Cui et al. ( 2018 ), and provide an
xample of fa v ouring boosting o v er tree-based methods. In this case,
NRAS 527, 3381–3394 (2024) 
xtreme gradient boosting is reported to reach the best accuracy,
hile natural boosting retrieves the most scatter as a probabilistic

egressor. 
Jespersen et al. ( 2022 ) apply graph neural networks to ILLUS-

RISTNG . Ho we v er, the y only use the dark matter version and
ompute baryonic properties with a semi-analytical model, effec-
ively making the predictor emulate such a model instead of a
ydrodynamic simulation. Other works exist that focus on alternative
lgorithms or hybrid approaches. Moster et al. ( 2021 ), for example,
pply wide and deep neural networks (WDNNs) and reinforcement
earning. Ho we ver, the baryonic properties are calculated not through
 hydrodynamic simulation but EMERGE , an empirical model that
tatistically links properties from surv e ys instead of simulating
aryonic physics (Moster, Naab & White 2018 ). The prediction
roblem is flipped by von Marttens et al. ( 2022 ), who retrieve dark
atter haloes from their baryonic properties in ILLUSTRISTNG instead.
Moews et al. ( 2021 ), on the other hand, extend the equilibrium
odel by incorporating lar gest-progenitor mer ger trees, 1 and com-

ine it with extra trees into a hybrid approach. One disadvantage of
uch analytical models is that they predict a limited set of properties.
hey can, ho we ver, be looped into both the training and prediction
teps of machine learning algorithms by first predicting a limited
et of properties with the analytical model and then using these
redictions together with halo properties to predict the complete set
f baryonics. Related work on hybrid models is done by LSST Dark
nergy Science Collaboration ( 2020 ), who generate mock catalogues
y combining empirical and semi-analytical models. This leads to the
eighted Monte Carlo sampling of baseline catalogues to impro v e

tatistical realism. 
Stiskalek et al. ( 2022 ), similarly to Moster et al. ( 2021 ), also

se a WDNN approach for ILLUSTRISTNG and HORIZONAGN , and
nclude a comparison with extra trees, but with a particular focus on
eproducing the intrinsic scatter of the galaxy–halo connection. The
eason is a well-known failure of commonly used machine learning
lgorithms when applied to hydrodynamic simulations to retrieve the
xpected scatter. The prediction of a Gaussian probability distribution
or estimating targets does, of course, impose a constraint on the
catter. Still, probabilistic approaches to scatter reproduction are
ommonly encountered features in the literature (see, for example,
ehmann et al. 2016 ; Desmond et al. 2017 ; Mitra et al. 2017 ; Cao
t al. 2020 ). 

Machine learning methods that rely on standard metrics like the
ean squared error (MSE) face certain limitations. The dominant

rawback for this application area is that these models aim to recreate
he provided data without knowledge of the underlying physical
heory. Some prior work tries to solve this issue, for example the
entioned reports on weighted sampling through baseline libraries

y LSST Dark Energy Science Collaboration ( 2020 ) and pre-
rediction of baryonic subsets to aid the machine learning model
Moews et al. 2021 ). Another more direct way is injecting theory
irectly into the learning process of neural network architectures,
ith such models coined physics-informed neural networks (PINNs;
aissi, Perdikaris & Karniadakis 2019 ). 
Originally developed for the finding of solutions for partial

ifferential equations, PINNs are rooted in older research on neu-
al networks for ordinary and partial differential equations (see,
or example, Dissanayake & Phan-Thien 1994 ; Lagaris, Likas &
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otiadis 1998 ). In such models, knowledge represented as suitable 
quations offers domain constraints. Various approaches exist that 
nclude physical equations into the loss function, while replacing 
 lengthy simulation with a machine learning model has become 
ommon practice in many scientific endea v ours (McCarn Deiana 
t al. 2022 ). The line of thinking behind this approach is simple;
nstead of e v aluating the model solely on prediction accuracy through

etrics such as the MSE, additional loss components can enforce 
ompliance with additional parameter relationships. For a more in- 
epth o v erview of this rapidly expanding area of physics-driven deep
earning, we refer interested readers to the re vie ws by Karniadakis
t al. ( 2021 ) and Cuomo et al. ( 2022 ). 

PINNs are not entirely alien to the field of astrophysics in 
eneral. Recent work by Mishra & Molinaro ( 2021 ) targets the
imulation of radiative transfer by minimizing the residual of the 
nderlying transfer equations, while Martin & Schaub ( 2022 ) bypass
nefficiencies of gravity models to learn representations of small- 
ody gravity fields directly. Other recent examples include Branca & 

allottini ( 2022 ) on solutions for interstellar medium chemistry 
nd the finding of quasi-normal modes of non-rotating black holes 
Cornell, Ncube & Harmsen 2022 ). The development and application 
f these architectures offer a powerful way to add knowledge to 
bserv ational e vidence to enforce adherence to theoretical models in 
raining the machine learning algorithm. 

In this paper, we present the first way to incorporate the concept
f PINNs into the active research field of the completion of dark
atter-only information in cosmological simulations with baryonic 

roperties. To achieve this goal, we modify the training process of
 deep learning model through two different no v el e xtensions of the
oss function. The first part is based on the standard approach of
njecting physical theory into these models and adds the stellar-to- 
alo mass relation (SHMR) as described by Moster et al. ( 2010 ) into
he training process. This double power law is subsequently used 
y Moster et al. ( 2018 ) to parametrize the instantaneous baryon
onv ersion efficienc y, meaning the efficienc y with which gas is
ransformed into stars, and provides a theory-oriented constraint. 

While this relation can, of course, be argued to be an empirical
rescription rather than physical theory, an argument for being 
hysics-informed is given through the baryon conversion efficiency, 
ith higher M h values leading to the collection of more baryons. 

n detail, this link is more complicated, and although sufficient for
n exploratory study on the benefit of these types of constraints,
e discuss the limitations. In a broader sense, the description as
hysics-informed stems from the name of the model family itself. 
The second part, which presents another no v el addition, forces

he model to recreate the scatter of the underlying hydrodynamic 
imulation by including the Kullback–Leibler divergence (KLD) 
s an asymmetric distance measure between approximations of the 
robability distributions for training targets and associated model 
redictions (Kullback & Leibler 1951 ; Ferdosi et al. 2011 ). This
iffers in its motivation from the inclusion of the SHMR from
oster et al. ( 2010 ), as it targets the recreation of scatter and

ot an impro v ement in mean accurac y. In doing so, we show that
ur extensions of existing machine learning approaches in baryon 
npainting from dark matter halo properties are a powerful tool for

odern cosmological simulations. 
Compared to the baseline model, our results demonstrate im- 

ro v ements in both predictive accuracy and the reproduction of
catter, and show suitable correlations between target variables and 
odel predictions. The contribution pertains to the broader field of 
achine learning in astrophysics, including adding physical theory 

nto predictive models and using distributional loss components. 
The remainder of this paper is structured as follows. In Sec-
ion 2 , we provide an overview of our machine learning approach
nd data. Section 2.1 describes the SIMBA suite of cosmological 
imulations and our data set. Section 2.2 co v ers the functionality
nd justification of our baseline PINN model; Sections 2.3 and 
.4 introduce extensions of the loss function for the SHMR and
 distribution comparison between predictions and target values, 
espectively. Section 3 presents our experiments and their results. 
pecifically, Section 3.1 explains the fitting of our theory constraint 

o SIMBA and the weighting of loss function components. Section 3.2
rovides the results for our predictions, and Section 3.3 shows 
orrelations for individual data point accuracy. Section 4 discusses 
ur findings, limitations of our approach, and follow-ups. Lastly, 
ection 5 provides our conclusions. 

 DATA  A N D  M E T H O D O L O G Y  

.1 Simulation data from the SIMBA suite 

he SIMBA simulation models the co-evolution of gas and dark matter
ithin an expanding metric using the GIZMO code (see Hopkins 
015 ), which itself is based on the GADGET-2 (Springel et al. 2005 ).
t employs the meshless finite mass hydrodynamics method, which 
arries the convenience of a mass-conserving particle-based code 
ith the shock and instability-capturing advantages of a Riemann 

olver-based scheme. 
Many so-called sub-grid processes have been added to GIZMO 

o model the formation and evolution of galaxies. These include 
adiative cooling and photoionization heating, chemical enrichment 
rom stellar evolution, the formation of stars and supermassive black 
oles, the energy release (‘feedback’) from supernovae and black 
ole accretion discs, and the growth and destruction of dust. The
omplete model detailing these sub-grid prescriptions is described 
n Dav ́e et al. ( 2016 , 2019 ). 

SIMBA simulations begin in the linear regime at redshift z = 249,
nd are evolved to z = 0, meaning today. 151 snapshot outputs are
tored at various redshifts along the way. The main SIMBA run models
 random cube of 147 Mpc (comoving) on a side, represented by
024 3 gas elements and 1024 3 dark matter particles. The minimum 

adaptive) spatial resolution is 0.7 kpc. The simulation assumes a 
lanck -concordant cosmology (see Planck Collaboration XIII 2016 ) 
f �m 

= 0.3, � = 0.7, H 0 = 68 km s −1 Mpc −1 , σ 8 = 0.82, and n s =
.97. This results in a mass resolution of 1.8 × 10 7 per gas element
nd 9.5 × 10 7 per dark matter particle. 

Each snapshot is analysed using the CAESAR galaxy/halo catalogue 
ackage. For each halo identified within SIMBA using GIZMO ’s native
hree-dimensional (3D) Friends-of-Friends (FoF) finder, CAESAR 

dentifies galaxies as collections of stars and dense gas via a
D FoF algorithm. The most massive galaxy within a halo is
efined as the central, and the others are satellites. A large range
f physical and photometric properties are computed for each 
alo and galaxy. For this work, the key galaxy quantities are the
tellar mass ( M ∗), star formation rate (SFR), SFR-weighted gas-
hase metallicity ( Z ), neutral hydrogen mass ( M H I ), molecular
ydrogen mass ( M H 2 ), and central supermassive black hole mass
 M BH ). 

These properties are obtained by summing the rele v ant particles
n each galaxy. For haloes, the rele v ant quantities are the total mass
 M h ), the dark matter half-mass radius ( r h ), and the dark matter
elocity dispersion ( σ h ). The catalogues are stored as Hierarchical 
ata F ormat v ersion 5 (HDF5) files, and CAESAR pro vides a simple
et powerful PYTHON -based access interface. The SIMBA snapshots 
MNRAS 527, 3381–3394 (2024) 
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nd catalogues are all publicly available online for use by the
cientific community. 2 

Our work uses central galaxies from the m100n1024 151
ersion of the SIMBA main runs. Entries for which M BH = 0 are
ropped to a v oid zero-mass black holes distorting the distributions of
redictions in our experiments, which is in line with related research
o v ered in Section 1 . This allows predictive models to focus on the
eco v ery of accurate shapes for exploratory studies, while a sharp cut-
ff from seeding processes in hydrodynamic simulations complicates
his in continuous prediction spaces. These considerations, as well
s potential solutions, are further discussed in Section 4 . 

Similarly, we restrict the range of included halo masses to 11 ≤
og 10 ( M h ) ≤ 14, following the same related research. Apart from
hese pre-processing steps, we refrain from any further alterations.

hile suitable data selections could lead to impro v ed predictions,
he goal of this paper is to maintain generalizability. For the model
raining and prediction processes, we apply min–max normalization
o input and target variables to scale values within the same interval
0, 1] and then revert predictions to their proper scales. 

.2 Physics-informed neural network model 

he concept of PINNs rests on the assumption that data-driven
tatistical learning can be enhanced with domain knowledge. This
ntegration can be implemented using different frameworks, as
o v ered in the o v erview of Section 1 and related re vie ws (Karniadakis
t al. 2021 ; Cuomo et al. 2022 ). One approach is to generate more
ata specifically crafted to enforce domain knowledge into the model.
hile simple, this approach requires large amounts of additional

ata to co v er a broad region of the input-variable space, effectively
ntroducing observational biases into the inductive analysis (Yang &
erdikaris 2019 ; Kashefi, Rempe & Guibas 2021 ). 
Another approach involves designing specific learning algorithms

hat embed knowledge into the learning architecture, for example,
onvolutional neural networks for images and speech (see LeCun &
engio 1995 ), graph neural networks (see Zhou et al. 2020 ; Wu
t al. 2021 ), and networks for Hamiltonian systems, among others
Jin et al. 2020 ). Implementing this approach is difficult because
mbedding physical laws within a neural network architecture is
imited to simple processes. Complex processes require architectural
esigns that cannot be easily realized with current learning frame-
orks; e ven relati vely simple processes need complex and elaborate
esigns. Regarding practical applications, a second complication of
hese purpose-designed models is creating a network specific to a
iven problem, making the transfer to new domain applications time-
onsuming. 

The third approach we adopt here enriches the loss function
o explicitly incorporate constraints, usually as partial differential
quations (Lagaris et al. 1998 ; Raissi et al. 2019 ). The benefit
s a decoupling between the machine learning strategy and the
mbedded knowledge; the corresponding framework has broader
pplicability since the learning architecture is built independently of
he underlying physical laws. Normally, the loss function is extended
o include a measure of the accuracy of each prediction and the degree
f alignment with a physical constraint. 
The ability of PINNs to generalize well goes beyond approxima-

ion theorems. The representational power of neural networks is well
nown; under limited assumptions, any continuous function can be
pproximated to an arbitrarily close fit using a neural network with a
NRAS 527, 3381–3394 (2024) 

 https://simba.roe.ac.uk

g  

S  

b

nite number of hidden nodes and one hidden layer (Cybenko 1989 ;
arotsky 2017 ). It should be noted that representational power is not
qui v alent to generalization power. Adding domain knowledge to
he loss function impro v es the generalizability of PINNs by reducing
he bias component of error while keeping the variance component
nder control (Hastie, Tibshirani & Friedman 2009 ). 
In traditional PINNs, the final loss, L f , is a weighted combination

f two losses: one is the data-driven empirical loss, L s , and the other
s the domain-knowledge constraint, L k , with respective weights w s 

nd w k , so that 

 f = w s L s + w k L k . (1) 

he first term is the conventional loss obtained in traditional neural
etworks through methods such as the squared difference between
redictions and target values. Training a network NN θ that aims to
nd a near-optimal parameter vector θ , for example, through gradient
escent, yields a surrogate for a solution to processes such as complex
imulations. The corresponding output ˆ f ( x), where x is a feature
 ector, serv es to adjust the weights during training by looking at a
oss function L s ( ˆ f ( x ) , y ). Here, y is the true response variable, or
he target value from the underlying hydrodynamic simulation in our
ase, and ˆ f ( x) is our model-provided estimate. 

The additional term, L k , adds domain constraints, usually as
ifferential equations. Specifically, the term captures the partial
ifferential residuals as co v ered in Section 2.3 . In our study, the
nputs to the neural network are x : = [ M h , r h , σ h ] corresponding to
ark matter halo mass at present, dark matter half-mass radius, and
ark matter halo velocity dispersion, respectively. 
The outputs are y : = [ M ∗, SFR, Z , M H I , M H 2 , M BH ] corresponding

o stellar mass, SFR, metallicity, neutral and molecular hydrogen
asses, and black hole mass, respectively. During training, we aim

o minimize the residual sum of squares, 

 s = 

1 

N 

N ∑ 

i= 1 

M ∑ 

j= 1 

( y ( j ) 
i − ˆ f ( j ) ( x i )) 

2 . (2) 

Here, N is the number of examples in the training data, while M is
he respective target space subject to prediction. 

As the subsequent distribution-based loss is calculated o v er each
poch’s output for the training data, we take the arithmetic mean
f the residual sum of squares for each training iteration. Domain
nowledge minimizes a different loss function, L k , forcing the final
odel to obey the constraint from physical knowledge. Here, we

ssume points { x i } sampled across the entire input space. In the next
ection, we explain the domain loss in detail. With the defined loss
unctions, the neural network NN θ is trained to obtain parameters θ
sing efficient optimization methods, such as gradient descent. The
eights w s and w k enable different contributions to the final loss

unction and can be tuned automatically as part of the optimization
rocess. 

.3 Inclusion of baryon conversion efficiency 

s the name suggests, the SHMR links the stellar mass of a given
alaxy to the dark matter halo mass. Suitable parametrizations have
een shown to reflect the galaxy mass function observed in the
hird data release of the Sloan Digital Sky Survey (see Panter et al.
007 ) more closely, as it does not assume a constant SHMR. The
nstantaneous baryon conversion efficiency ε is the rate at which
as is transformed into stars. This efficiency can be described by an
HMR parametrized through a double power-law model as shown
y Moster et al. ( 2010 ). 

https://simba.roe.ac.uk
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The latter introduces a parametrization that follows observations 
y a v oiding a surplus of galaxies at low and high masses. For two
lopes β and γ that are used to determine the decrease in efficiency 
t lower and higher masses, respectively, the parametrization takes 
he form 

( M, z = 0) = 2 εN 

( (
M h 

M 1 

)−β

+ 

(
M h 

M 1 

)γ
) −1 

. (3) 

ere, εN is the normalization, while M 1 denotes the characteristic 
ass at which the respective efficiency is the same as its normal-

zation. Moster et al. ( 2018 ) use this to parametrize the instanta-
eous baryon conversion ef ficiency, sho wing that peak conversion 
fficiency takes place at halo masses similar to the characteristic 
ass, 

 max = M 1 

(
β

γ

)( β+ γ ) −1 

, (4) 

ith the general assumption of β, γ > 0. The integrated baryon 
onv ersion efficienc y is dependent on redshift (see Moster, Naab &

hite 2013 ), and the mentioned work allows for parameters of the
nstantaneous efficiency to vary, with 

log 10 M 1 ( z) = M 0 + M z (1 − ( z + 1) −1 ) 

= M 0 + M z 

(
z 

z + 1 

)
, (5) 

nd with the normalization and slopes given by 

N ( z) = ε0 + εz (1 − ( z + 1) −1 ) = ε0 + εz 

(
z 

z + 1 

)
, 

β( z) = β0 + βz (1 − ( z + 1) −1 ) = β0 + βz 

(
z 

z + 1 

)
, 

γ ( z) = γ0 . (6) 

s we operate at z = 0, these considerations are simplified and
eed only be optimized for single values. In Section 3.1 , we will
o v er this optimization for SIMBA data using maximum likelihood 
stimation (MLE), with ranges provided by prior research on this 
arametrization. This view on the SHMR can then be included, for
 given data set size of N , into the loss function of equation ( 1 ) as 

 k = 

N ∑ 

i= 1 

⎛ 

⎝ 

ˆ M ∗
M h 

− 2 εN 

( (
M h 

M 1 

)−β

+ 

(
M h 

M 1 

)γ
) −1 

⎞ 

⎠ 

2 

. (7) 

his injection of domain knowledge provides an additional constraint 
or the model, which subsequent experiments show to benefit the 
odel in reco v ering the mean relation better. 
Including the M ∗–M h relationship used in this study is physics-

nformed through the link to the baryon conversion efficiency, which 
s given through the fact that bigger dark matter haloes are able to
ollect more baryons, thus forming more stars. This is, of course, 
 simplified treatment, but sufficient for exploratory work, and 
rawbacks are further discussed in Section 4 . 

.4 Constraints from predicti v e distributions 

eproducing the scatter found in hydrodynamic simulations when 
redicting baryonic properties based on dark matter haloes is a 
nown challenge in the literature (Cui et al. 2018 ; Stiskalek et al.
022 ). As described in Section 1 , probabilistic approaches relying 
n parametrized distribution families are common. In this work, we 
arget the reproduction based on the training data distribution directly 
y introducing a second extension to the standard loss function in
quation ( 2 ) (see Section 2.2 ). 

The KLD is a statistical distance measure to assess the difference
etween two distributions. Introduced by Kullback & Leibler ( 1951 ),
t has found various applications in astrophysics in recent years (see,
or example, Ben-David, Liu & Jackson 2015 ; Hee et al. 2016 ;

oews et al. 2019 ; Nicola, Amara & Refregier 2019 ). For a given
eference distribution P and proposal distribution Q , the KLD can be
ritten as 

 KL ( P || Q ) = 

∑ 

x∈ χ
P ( x ) log 

P ( x ) 

Q ( x ) 
, (8) 

r, correspondingly, with an integral for absolutely continuous 
robability distributions. One important point is that the KLD is 
ot a distance metric due to its status as an asymmetric difference
easure. This means that 

 KL ( P || Q ) �= D KL ( Q || P ) , (9) 

s it calculates a directional information loss when approximating P 

ia Q . It also does not satisfy the triangle equality, 

( a, c) ≤ d( a, b) + d( b , c ) , (10) 

ith points { a , b , c } ∈ M for a given metric space M . Given the above,
he KLD is applicable only when a ‘true’ reference distribution is
sed. Fortunately, this is the case here, as we want to calculate the
ifference between the distributions of model predictions and their 
espective targets. 

Following Fussell & Moews ( 2019 ), who propose the incorpora-
ion of the KLD into the loss function in the context of generative
odelling – although without implementing the proposal due to 

onflicting success metrics – we extend equation ( 1 ) to 

 f = w s L s + w k L k + w KL L KL . (11) 

ere, the KLD is part of the o v erall loss function through a normal
ssumption placed on the target and prediction distributions, as the 
oss needs to remain easily differentiable for error backpropagation 
uring training. This means that 

 KL = D KL 

(
N ( μ, σ ) || N ( ̂  μ, ̂  σ ) 

)
, (12) 

or target mean and variance, μ and σ , and corresponding predictions, 
ˆ and ˆ σ . In doing so, and as described in the o v erview in Section 1 ,

e impose an additional constraint on the learning process by 
orcing the model to recreate the approximate distribution of the 
nderlying training data. This extension focuses on the more accurate 
eproduction of the scatter found in the underlying simulation, not 
n the impro v ement of the mean accuracy. In later sections, we will
ee how this a v oids an underprediction of tails in the scatter of the
aryonic properties of interest. 
Fig. 1 provides a schematic for the complete model incorporating 

oth the SHMR from Section 2.3 and the KLD, which we dub the
Hybrid’ model going forward. The lower part of the figure shows the
eural network model, going from input data containing information 
rom a set of dark matter halo properties to baryonic predictions, ˆ y ,
s the model output. The components of the loss function are encased
y a dashed line, listing the MSE, the KLD introduced in this section,
nd the SHMR. The respective weights of these components can be
elected based on the predictive performance of the neural network, 
hich we co v er as part of our experiments in Section 3.1 . 
The normal assumption made for the respective distributions is, 

f course, not without fault. In particular, it remains to be seen
n the results whether this assumption can lead to a decrease in
ean predictiv e accurac y for sufficiently non-normal distributions. 
MNRAS 527, 3381–3394 (2024) 
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Figure 1. Illustration of the hybrid model. The loss function used in this 
framework is a combination of the MSE, the KLD, and the SHMR. 
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Table 1. Optimization of best-fitting loss function component weights using 
SMBO. The table lists the MSE and MAPE for various loss function weight 
combinations in the hybrid model. The values in brackets list the associated 
standard deviations. 

( w s , w k , w KL ) MSE MAPE 

(1, 0.6, 1.3) 0.025 79 (0.0016) 1.098 (0.0532) 

Figure 2. Double power-law fitting of model predictions for the baseline 
MLP, the PINN, the hybrid PINN + KLD model, and the SIMBA data. 
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o we v er, it pro vides an approximation that is differentiable for the
urpose of backpropagation during training and is computationally
heap enough to result in reasonable training times on small numbers
f graphics processing units (GPUs) without requiring access to
tacks in large-scale supercomputing solutions. We reserve part of
he discussion in Section 4 to list possible alternatives in related
ollow-up research. 

 E XPERIMENTS  A N D  RESULTS  

.1 The stellar-to-halo mass relation in SIMBA 

e first train a simple feed-forward neural network, a multilayer
erceptron (MLP), using only the MSE in the loss function, and
hen use this baseline model to predict all six parameters. In order
o efficiently explore and optimize the hyperparameter space, we
dopt a sequential model-based optimization (SMBO) approach. The
MBO algorithm iteratively updates the surrogate model, explores

he hyperparameter space by sampling new configurations, evaluates
heir performance using the objective function, and refines the search
rocess based on the observed results, allowing for a reasonably
ast and continuous optimization. For this, we use the Optuna
yperparameter optimization framework to determine the optimal
umber of layers and neurons in the hidden layers (Akiba et al.
019 ). The search space was set to be between 3 and 10 layers and
0–100 neurons per layer, following common choices for similarly
tructured problems. 

After invoking the optimization module, the best configuration
isplayed 9 hidden layers with 80 artificial neurons, each with a
ectified linear unit (ReLU) acti v ation function, equally following
urrent practice. In addition, we split off 10 per cent of the data set as
 validation set to perform a search on the weights, freely chosen in
0, 1], for the loss function components, w = [ w s , w k , w KL ]. These
eights are optimized through a combination of grid-search Bayesian
ptimization and meta-heuristics using Optuna (Akiba et al. 2019 ).
hey are optimized to minimize the o v erall loss on a validation
et, av eraged o v er 10 runs. As in most optimization techniques, the
NRAS 527, 3381–3394 (2024) 
rivial solution of assigning the least possible value to each weight is
 v oided by imposing a constraint on the weights, meaning the sum
f the weights is a constant. 
While an MLE approach is infeasible due to the model retraining

or each run, this allows us to gauge a suitable combination of
eights. The best-fitting combination is tested for 10-fold cross-
alidation using the MSE and the mean absolute percentage error
MAPE), with the results listed in Table 1 . As Fig. 2 and the top
anels of Fig. 3 show, this basic model can reco v er the basic pattern
f the SHMR represented in equation ( 3 ). Ho we ver, the pattern
xhibits a diminished variance at lower and higher halo masses and
s expectedly flat around the characteristic M max value. 

As a result, the predictions show a flatter relation than 1:1 relative
o the true distribution from SIMBA , indicating a bias. We note that
IMBA ’s galaxy sample is limited in stellar mass, which results in
 diagonal completeness limit in the SHMR. This leads to galaxies
ith a high M ∗/ M h ratio for their halo mass being preferentially

ncluded in the sample; such asymmetric completeness (known as
almquist bias) is common in astrophysics, but can be difficult for
achine learning algorithms to reco v er. 
Our PINN, on the other hand, is constructed by encoding equation

 3 ) into the loss function as shown in Section 2.3 . The parameters
f the resulting loss component shown in equation ( 7 ) are estimated
hrough MLE. MLE is performed to optimize the parameters of
quation ( 3 ) and, accordingly, of the PINN part of the loss function
n equation ( 7 ). Here, the likelihood function is the density function
egarded as a function of given parameters θ , 

 ( θ ) = 

n ∑ 

i= 1 

f ( x i | θ ) , with θ ∈ �, (13) 

here � is the corresponding parameter space and f ( ·) is the proba-
ility density function. We can estimate the optimal combination of
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Figure 3. Top: Hexagonal joint histograms of the predicted SHMR from different models and the true SHMR calculated from the SIMBA test set, as well as 
corresponding double power laws as described in equation ( 3 ). From left to right, the panels show the results from the baseline MLP, the PINN, and the hybrid 
PINN + KLD model. The SIMBA data are shown in green. Bottom panels: Hexagonal joint histograms of the predicted versus target SHMR for different models 
and the test set, with colour coding as described abo v e. The diagonal line indicates x = y for the resulting correlation plots. 
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Table 2. Performance comparison between different models. The table lists 
the coefficient of determination ( R 

2 ) and Pearson’s correlation coefficient ( ρ) 
for different neural network models corresponding to Figs 2 and 3 , as well as 
the best-fitting relation following Moster et al. ( 2010 ). The hybrid model is a 
combination of PINN with KLD in the loss. 

Model MSE R 

2 ρ

Moster relation 0.545 0.730 0.855 
MLP 0.024 0.821 0.906 
PINN 0.023 0.827 0.910 
Hybrid (PINN + KLD) 0.020 0.848 0.921 
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arameter values of interest, ˆ θ , as 

ˆ = arg max 
θ∈ � 

L ( θ | x) , (14) 

hich results in a choice of parameter values that make the observed
ata the most probable. Dif ferent v alues in a wide range have
een reported on equation ( 3 ) (Shankar et al. 2017 ; Kravtsov,
ikhlinin & Meshcheryakov 2018 ; Behroozi et al. 2019 ). Instead of
irectly applying these numbers, they become the initial guess of our 
stimator, and the range of values is considered a constraint. The best- 
tting parameters for the test set are εN = 0.02, M 1 = 12.19, β = 1.1,
nd γ = 0.78. With this extra constraint, the predicted SHMR pattern 
etter reco v ers the curvature around M max in Fig. 3 . Equation ( 3 ),
o we ver, as a double power-law function, this additional constraint 
annot introduce the scatter found in the cosmological simulation and 
till displays a slightly biased reco v ery of the true SHMR relation. 

To retrieve the scatter, we need a way to provide information as part 
f the loss function, ef fecti vely forcing the model to recreate it. For
his, we extend the loss function with an additional component using
he KLD, which we introduced in Section 2.4 . This distributional 
ivergence measurement has a history of being used in various 
osmological applications, as discussed in Section 1 , including the 
tudy of properties and auxiliary observational data on baryonic 
hysics (Yasin et al. 2023 ). The resulting predictions from this hybrid
cheme track the respective target values more faithfully and with 
ess bias. 

We calculate the mean and covariance matrix of the training data 
nd construct a multi v ariate Gaussian distribution in six dimensions, 
ne for each prediction target property. By including the KLD-based 
oss in equation ( 8 ) into the o v erall loss function, we create a hybrid
odel combining the PINN with a KLD measurement as written in 

quation ( 11 ). Table 2 , listing the MSE as well as the coefficient
f determination ( R 

2 ) and the Pearson correlation coefficient ( ρ),
emonstrates the benefit on the predictive power of these models. 
We plot the SHMR relative to the halo mass in Fig. 3 to provide
 visual o v erview. This confirms that the hybrid approach between
xtra physical knowledge and distributional adherence outperforms 
oth the baseline model and the PINN alone. The latter provides
nformation on the mean trends of the SHMR, while the KLD
elps the neural network to mimic the substantial scatter, which an
xact equation does not provide. Compared to the baseline MLP, 
he figure shows that the distributional component helps predict 
he SHMR more accurately at lower halo masses while tracing the
ownward scatter at higher halo masses. 
To better understand the correlation between targets and predic- 

ions, the bottom panels of Fig. 3 show the SHMR values from SIMBA

n the horizontal axis, with SHMR values from model predictions on
he vertical axis. The result would follow the plot’s diagonal line for a
erfect model. The visuals, which indicate a better correlation for the
INN compared to the MLP, and for the hybrid model compared to
oth, are confirmed by the corresponding correlation measurements 
n Table 2 . As discussed in Section 2.4 , the normal assumption for
he KLD constraint could be argued to enable a decrease in mean
ccuracy in some cases, and these preliminary results demonstrate the 
 v erall ability of the model to use the constraint in a non-detrimental
anner. Apart from the SHMR, the KLD also impro v es the model’s
MNRAS 527, 3381–3394 (2024) 
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Figure 4. Correlation matrix of input and output parameters. The colour bar 
indicates the Pearson correlation coefficient values, calculated for variables 
in the SIMBA data set used in this work. 
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rediction ability on other baryonic properties, which we will co v er,
ogether with potential explanations for an improvement instead of
o discernible difference in case of no ne gativ e effect of the normal
ssumption, in Sections 3.2 and 4 . 

.2 Predicting baryonic properties from dark matter haloes 

fter establishing the effect on SHMR prediction, we expand our
nalysis to the full set of six baryonic properties, { M ∗, SFR, Z ,
 H I , M H 2 , M BH } . To better understand the cause of these results, we

alculate ρ values between the entire set of available parameters in
ig. 4 . 
Fig. 5 , where these variables are plotted against the halo mass,

hows that each parameter is reasonably well predicted upon visual
nspection. In particular, the model excels for M ∗ and M BH , while the
erformance on SFR and M H 2 is subject to a scatter taper at higher
alo masses. In the values of Fig. 4 , we can see that the correlations
etween the dark matter halo properties used as inputs, meaning
NRAS 527, 3381–3394 (2024) 

igure 5. Hexagonal joint histograms of target values and model predictions. The
he dark matter halo mass. Model predictions are in purple, while the SIMBA data ar
 M h , r h , σ h } , for these variables are considerably lower compared to
he rest of the investigated properties. At the same time, good results
re equally reflected in strong correlations for stellar and black hole
asses. As co v ered in Section 3.1 , this is aided by the additional
HMR constraint in the loss function. 
F ollowing this, we e xplore secondary correlations between differ-

nt variables, analogous to a similar analysis performed by Agarwal
t al. ( 2018 ). Fig. 4 indicates that galaxies with higher SFR exhibit
ositive correlations with M H I and M H 2 , and a negative correlation
ith Z . To test whether our model correctly learns the split in the

pecific SFR, 

SFR = 

SFR 

M ∗
. (15) 

e plot these properties against the stellar mass and colour data
oints using the distance in sSFR values from the mean M ∗–sSFR
elation,  log 10 sSFR, in Fig. 6 . The colour coding highlights the

L model’s reco v ery of the second-parameter correlation through
he sSFR, which is also seen in SIMBA . This means that the data
oints plotted in the figure are predictions of our model, not data
oints extracted from the simulation. The resulting mean scaling
elations are drawn for model predictions and the corresponding data
rom the underlying SIMBA simulation, with the former tracing the
esults of Agarwal et al. ( 2018 ) and Dav ́e et al. ( 2019 ). 

Both mean scaling relations are obtained by fourth-order polyno-
ial fitting, and we provide the 6th to 93rd percentile range for SIMBA

ata indicated by grey shading. In doing so, the figure provides the
imulation distribution as a reference in addition to the colour-coded
odel predictions. We use a bin size of 0.2 for the log 10 M ∗ values in

olar masses along the horizontal axis for the latter. The divergence
etween confidence intervals and the mean scaling relation for
etallicity in SIMBA at lower stellar masses is an artefact of a small

umber of data points available at this range, but we include this
eft-hand interval to e x emplify potential peculiarities encountered in
uch analyses. 

As our approach is a prediction problem using approximations,
t is not perfectly consistent, just like other works on machine
earning for baryonic inpainting into dark matter haloes. Here, the
 panels show, for the set of six baryonic properties of interest, plots against 
e in green. 
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Figure 6. Secondary correlations at z = 0. The panels show, from top to 
bottom, neutral hydrogen, molecular hydrogen, and metallicity as a function 
of the stellar mass. Mean scaling relations are drawn with green dot–dashed 
lines for SIMBA and red dashed lines for our hybrid model. Galaxies are 
coloured by the distance from the mean M ∗–sSFR relation. 
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Figure 7. Density plots for predictions on all six baryonic target properties. The pa
hydrogen ( M H I ), molecular hydrogen ( M H 2 ), and black hole mass ( M BH ). The co
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nderprediction of scatter at higher stellar masses is notable for M H 2 
ompared to SIMBA . At the same time, the relationships of Z , M H I ,
nd M H 2 to the sSFR are preserved around the mean scaling relations,
lthough in a cleaner split than is the case in the target values provided
y the SIMBA cosmological simulation suite. 
While similar patterns can be found in SIMBA , the discrepancies

n polynomial fits can be attributed to the w ave-lik e nature common
o neural network predictions. This can depend on the acti v ation
unction and refers to the non-linear change in the vertical distribution 
f data points in Fig. 6 . While common features in these types of
odels, the present exploratory study demonstrates the viability of 

ur approach and is discussed further in Section 4 . MLP predictions
ithout extensions to the loss function severely underpredict the scat- 

er across the board at higher stellar masses. The o v erall distribution
f predictions stays withing the SIMBA -indicated areas. The reco v ery
f secondary correlations between SFR (or gas content), metallicity, 
nd stellar mass, known as the fundamental metallicity relation, is 
n important success of this machine learning framework. 

.3 Correlations for separate prediction targets 

n this section, we further analyse the quality of model outputs.
imilar to our visualizations in Section 3.2 , we wish to compare the
odel predictions to the underlying target data from the SIMBA suite

f cosmological simulations, but separately for different baryonic 
roperties. Fig. 7 shows kernel density estimates (KDEs) for all six
arget properties. For the bandwidth optimization, we make use of 
cott’s rule as the default heuristic in a variety of statistical software
MNRAS 527, 3381–3394 (2024) 

nels show separate KDEs for stellar mass ( M ∗), SFR, metallicity ( Z ), neutral 
rresponding values from the underlying SIMBA test data set are plotted in 
ed. 
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Table 3. Statistical validation for the full experimental run of hybrid model. The table lists the MSE, the coefficient of determination ( R 

2 ), Pearson’s correlation 
coefficient ( ρ), and the KLD for each output variable. 

MLP Hybrid 
Variable MSE R 

2 ρ KLD MSE R 

2 ρ KLD 

M ∗ 0.023 0.827 0.901 0.049 0.020 0.847 0.920 0.045 
SFR 0.638 0.050 0.267 0.245 0.423 0.080 0.284 0.226 
Z 0.052 0.277 0.527 0.114 0.044 0.352 0.593 0.078 
M H I 0.221 0.215 0.450 0.215 0.162 0.235 0.480 0.191 
M H 2 0.308 0.087 0.284 0.293 0.208 0.097 0.313 0.290 
M BH 0.276 0.466 0.682 0.090 0.214 0.502 0.709 0.091 

p

β

 

p  

r  

m  

m  

o  

r
 

o  

f  

d  

m  

n  

o  

i  

n
 

a  

v  

h  

t  

e
 

i  

a  

p  

l
 

M  

r  

n  

o  

f  

b  

v  

c  

F
 

t  

t  

M  

e  

K  

6  

M  

t  

t  

S
 

m  

f  

i  

i  

t  

m  

u  

p

4

T  

t  

i  

t  

a  

f  

t  

f  

g  

l  

1  

h  

a
 

t  

e  

e  

2  

a  

s  

e  

c
 

t  

p  

u  

a  

o  

t  

a  

t  

s
 

i  

p  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/2/3381/7342487 by guest on 30 N
ovem

ber 2023
ackages for a data set length | X | with a given dimensionality, 

ˆ = | X| −( dim ( X) + 4) −1 
. (16) 

In addition, we also plot the same for the baseline multilayer
erception used in previous comparisons. These density plots reveal a
easonably close agreement regarding scatter between SIMBA and our
odel’s predictions for all baryonic properties. While the baseline
odel is already performing well on the stellar mass and, to a degree,

n the black hole mass, it visibly struggles with the scatter of the
emainder of the target properties. 

Our hybrid model shows major impro v ements in the distributions
f SFR, Z , M H I , and M H 2 . For the MLP, the predicted distributions
orm a sharp peak around the mean, demonstrating especially
if ficult-to-retrie ve scatter for the SFR and the molecular hydrogen
ass. While the injected physical knowledge on the SHMR does

ot aid with scatter predictions but instead with the accuracy
f associated properties, the KLD loss component contains extra
nformation on distributions that allows for the production of the
ecessary scatter. 
To quantify these impro v ements, we compare the baseline model

nd our hybrid approach in Table 3 , providing MSE, R 

2 , ρ, and KLD
alues as for previous comparisons. Here, we can see the expectedly
igh correlations for M ∗, M BH , and, to a lesser degree, Z , comparable
o prior research on different hybrid approaches in this area (Moews
t al. 2021 ). 

While the latter does not use neural network architectures or direct
njection of information into a loss function, they build an additional
nalytical model into the prediction pipeline and use full largest-
rogenitor merger trees, which demonstrates the capability of our
oss function extensions. 

Despite the correct prediction of mean relations, results for SFR,
 H I , and M H 2 are not quite as perfect when viewed next to the

emaining baryonic properties. One reason is that we use a single
eural network model to predict all variables simultaneously instead
f using separate models. The downside is that the model cannot
ocus solely on a 1D prediction, but this is not desirable, as it also
ars the model from learning the connections between different target
 ariables. The result, ho we ver, is that properties with a smaller
orrelation coefficient in terms of input variables, as shown in
ig. 4 , are more difficult to reco v er. 
For the SFR and both hydrogen masses, we can see in Fig. 6 that

here is more scatter at higher dark matter halo masses for these
argets in particular, which usually have higher scatter compared to
 ∗, Z, and M BH (Shankar et al. 2017 ). Another reason for prediction

rrors is likely found in the normal assumption. To calculate the
LD loss and implant it into the backpropagation, we assume a
D Gaussian distribution, which is not completely true for our data.
ore complex approximations, ho we ver, are beyond the scope of

his initial study due to often prohibitive computational costs and
NRAS 527, 3381–3394 (2024) 
he challenge of maintaining differentiability but are discussed in
ection 4 . 
There are potential solutions, which include the injection of
ore information, for example, on scatter relations, into the loss

unction. Another pathway is applying more data, such as merger tree
nformation, into the input features. The main purpose of this paper
s to show that PINNs, which make use of extra physical knowledge,
ogether with a second distributional loss component, can impro v e

odel performance in this challenging area and demonstrate the
tility that current developments in deep learning approaches can
rovide for the simulation of baryonic properties. 

 DI SCUSSI ON  A N D  LI MI TATI ONS  

he application of modern machine learning methods to the comple-
ion of N -body information has emerged as a growing area of interest
n recent years. Here, the sometimes mentioned unreasonable effec-
iveness of tree-based ensembles, most commonly random forests
nd extra trees, is that these models are comparatively simple in their
unctionality, and yet, as co v ered in Section 1 , are frequently found
o outperform neural network architectures in this area. For standard
eed-forw ard framew orks, the uni versal approximation theorem e ven
uarantees the ability to represent arbitrary functions under very
imited assumptions (Cybenko 1989 ; Hornik, Stinchcombe & White
989 ; Maiorov & Pinkus 1999 ). These theoretical capabilities do not,
o we ver, touch upon the ‘learnability’ of these functions, as there are
 wide variety of hyperparameters to consider. 

While tree-based ensembles are simple, they too are not immune
o such limitations, and more recent research has discussed expected
rror rates as non-monotonous functions concerning the number of
nsemble constituents to be set by the user (Probst & Boulesteix
018 ). With the first application of machine learning to this specific
rea having arguably started with Kamdar et al. ( 2016 ), recent works
uch as Moster et al. ( 2021 ), Jespersen et al. ( 2022 ), and Stiskalek
t al. ( 2022 ) have demonstrated the performance potential of suitably
hosen neural network architectures. 

One issue that remains is the limitations set by the data used for
raining and prediction in supervised machine learning models. A
opular adage from the early days of computer science still widely
sed is ‘g arbage in, g arbage out’, expressing the constraints on
rbitrarily powerful models by insufficient data sets. While the results
f cosmological simulations are, of course, by no means garbage,
hey are also limited by the physics they implement and the chosen
ssumptions and simplifications. PINNs provide a way to go beyond
hese ingredients, forcing the model to consider further explicitly
pecified physical relationships. 

Extensions of this exploratory study on the application of PINNs
n this area could address complications from the black hole seeding
rocess, including zero-mass black hole values in the data set. As
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Table 4. Data set size and input variables for related works and this paper. 
Here, S x , y , z denotes the different components of the spin, V c the maximum 

circular velocity in the subhalo, N h the number of dark matter particles bound 
to the subhalo, λh the halo spin, and ρh the local halo density. Sets for 
additional information at higher redshifts are indicated using braces. 

Size Input 

Kamdar et al. ( 2016 ) 249 370 M h , S x , S y , S z , σ h , N h , V c 

Agarwal et al. ( 2018 ) 3400 { M h } i , { ρh } j , λh , σ h 

Moews et al. ( 2021 ) 13 132 { M h } i , r h , σ h 

Dai et al. (this work) 14 247 M h , r h , σ h 
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Table 5. Performance metrics for related works. The table lists the coefficient 
of determination ( R 

2 ) and Pearson’s correlation coefficient ( ρ) for each output 
variable. Here, in addition to the variables described throughout this paper, 
M gas denotes the total gas mass of a subhalo in the indicated paper. 

Kamdar et al. ( 2016 ) Agarwal et al. ( 2018 ) Moews et al. ( 2021 ) 
Variable R 2 ρ R 2 ρ R 2 ρ

M ∗ 0.91 0.95 0.90 0.95 0.82 0.94 
SFR 0.63 0.79 0.55 0.74 0.73 0.87 
Z 0.93 0.96 0.73 0.86 0.21 0.66 
M gas 0.67 0.85 – – – –
M H I – – 0.35 0.59 0.36 0.65 
M H 2 – – 0.51 0.71 0.54 0.75 
M BH 0.72 0.85 – – 0.71 0.88 
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his inclusion is likely to distort the predictive distributions due to 
 sharp cut-off, the question is whether models can be trained to
uf ficiently dif ferentiate between these two regimes or an additional 
istinction step is required. A secondary discriminative model is a 
otential solution for this challenge, which w ould tak e the place of
 filter that assigns feature vectors to two different models; one for
ero-mass black hole predictions and one for the remaining majority 
f data points. While beyond the scope of this study, this could a v oid
mearing effects in the space between those two cases. 

An additional extension to the presented research is the inclusion of 
ther hydrodynamic simulations, as varying implementation details 
an lead to differences in the produced data sets. One example for this
s the presence of quenching in SIMBA , which impacts the correlation
etween SFR and M ∗. Depending on the goal of work in this area,
or example, when focusing on the main sequence, other simulations 
an be considered to suit these needs. 

Our additional implementation of distributional compliance as 
art of the loss function puts a further constraint on the model, which
argets scatter fidelity. The direct incorporation of this additional 
nowledge into the architecture also goes beyond prior work on the 
nclusions of analytical models, which relies on physical compu- 
ations outside of and before the application of machine learning 

odels, as previously implemented by Moews et al. ( 2021 ). 
At the same time, the predicti ve po wer of our architecture relies

n the suitability of the included loss function components in terms
f both the physical domain knowledge provided and the choice 
f a density approximation method. As co v ered in Section 3.1 , the
nclusion of baryon conversion efficiency through the relationship 
etween M ∗ and M h presents a simplification. This is especially the 
ase due to stellar feedback resulting in lowered efficiency at lower 
asses and AGN feedback resulting in lowered efficiency at high 
asses. For future research, if this particular constraint is to be kept

s part of the model, this should be further refined to more closely
ollow physical theory and represent a limitation. 

The natural extension of our work, although beyond the scope of
his paper, is the identification and analysis of additional domain 
nowledge to be injected into the loss function, thus allowing the 
odel to root its learning in a more complete set of physics. Another

athway is replacing our normal assumption with more complex 
pproximations that allow for non-Gaussian features and multimodal 
istributions. 
In Table 4 , we list the data set sizes and different dark matter

roperties used as inputs in similar works providing the same 
erformance metrics (Kamdar et al. 2016 ; Agarwal et al. 2018 ;
oews et al. 2021 ). In contrast to this paper, all three comparable

tudies employ tree-based models, with the largest data set used by 
amdar et al. ( 2016 ). The latter also provide their model, in addition

o M h and σ h , with the three spin components, number of dark matter
articles bound to the subhalo, and maximum circular velocity in the 
ubhalo, but omit r h as used in our work. This supplies additional
nformation on the dark matter halo of their model. 

Similarly, Agarwal et al. ( 2018 ) do not include r h , but add the halo
ocal density, with { M h } i denoting not only the current halo mass at
 = 0 but also the five preceding snapshots at higher redshifts, which
rovides information on the recent merger history . Conversely , { ρ} j 
ndicates the set of nearby halo mass densities within radii r ∈ { 200,
00, 1000 } (in kpc) focused on the halo’s mass centre, thus providing
dditional information in a similar way. That being said, their data
et is the smallest in this line-up. 

The work most closely aligned with ours in terms of inputs is
oews et al. ( 2021 ), although lar gest-progenitor mer ger trees o v er

he entirety of a halo’s evolution are provided instead of only the
urrent halo mass. More importantly, their hybrid approach uses an 
nalytical formalism to pre-compute a subset of baryonic properties 
ith a physical model, feeding the merger trees into both the latter

nd the subsequent machine learning model. 
In Table 5 , we list the performance metrics, R 

2 and ρ, for these
elated works to enable a discussion of differences in data and model
pproach. With regard to Kamdar et al. ( 2016 ), our model yields a
lose performance on M ∗ and M BH , but with a less robust prediction
f SFR and Z . This could be due to the size of the ILLUSTRIS data
et used by the authors, which is about eight times larger than our
vailable SIMBA data, as more suitable data usually lead to a better
erformance in machine learning models (Zhou et al. 2014 ). 
Agarwal et al. ( 2018 ) use MUFASA , the predecessor of SIMBA ,

nd benefit from their inclusion of prior halo masses and halo
ass densities at different distance radii. Our model’s results are 

omparable for M ∗ and M H I , with a slight underperformance for Z ,
ut there is a notable degradation in M H 2 and SFR predictions. Based
n the correlation matrix in Fig. 4 , these two properties are highly
orrelated, meaning that an impro v ement in one in future research
hould impact the other. One potential reason for this degradation is
he larger scatter in SIMBA higher halo masses, while Agarwal et al.
 2018 ) pre-select their galaxies to be star forming, which strongly
educes the scatter at high masses. 

Lastly, Moews et al. ( 2021 ) develop a hybrid approach that
ombines an extra trees ensemble with the equilibrium model and 
ncorporates merger trees into the latter. The same data and model
nputs are used in both works, save for the largest-progenitor merger
rees that are fed into both the physical and machine learning models.

hile our model achieves close results on M ∗, Z, M H I , and, to a lesser
egree, M BH , metrics of SFR and M H 2 are lower. Here, the difficulty
n predicting the SFR due to the large scatter could be data-driven,
hile Moews et al. ( 2021 ) utilize a physical model for this property.
t the same time, our model outperforms these results on Z , which

eflects the equilibrium model’s difficulty with this quantity. 
MNRAS 527, 3381–3394 (2024) 



3392 Z. Dai et al. 

M

 

s  

o  

A  

l  

w  

n  

c  

S  

p  

o  

a  

g  

r  

b  

t  

d
 

m  

f  

e  

T  

d  

p  

m  

G  

t  

s  

f  

i  

t  

c  

p  

c
 

i  

t  

d  

a  

n  

r  

t  

m  

m  

p
 

t  

t  

A  

t  

r  

a
 

a  

m  

t  

K  

(  

l  

l  

b  

t  

n  

a
 

o  

d  

r  

s  

s  

K  

a  

a  

m

5

I  

b  

a  

S  

i  

e  

e  

u  

c  

f  

t  

m
 

t  

i  

m  

b  

o  

s  

p  

f  

n  

s
 

a  

d  

n  

g  

c  

u  

r
 

s  

o  

s  

p  

t  

s
 

t  

c  

d  

a  

o  

e  

u

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/2/3381/7342487 by guest on 30 N
ovem

ber 2023
Overall, unlike our method focusing on the retrie v al of accurate
catter, the abo v e models are optimized for accurac y and make use
f more information on the dark matter halo. The results of both
garwal et al. ( 2018 ) and Moews et al. ( 2021 ) show a considerably

ess accurate scatter retrie v al than can be seen in our experiments,
ith noticeable underprediction of the tails. The aim of this work is
ot to replace existing research but to demonstrate modifications that
an increase the predictive ability of deep learning models in this area.
ince the data set, model, and purpose are different, this comparison
rovides a direction for future research targeting the combination
f these strengths. With regard to the model architecture, the closer
pproximation of scatter along each variable’s range instead of a
eneral distribution parameter per variable could further impro v e the
etrie v al of scatter. While beyond the scope of this work, this should
e combined with a closer look at alternative activation functions
o potentially alleviate the w ave-lik e nature of some predictions as
escribed in Section 3.2 . 
For follow-up research not using PINNs, or machine learning
odels that do not require the loss function to be differentiable

or backpropagation as described in Section 2.4 , we recommend
xtensions to the comparison of target and prediction distributions.
his work uses the KLD to calculate the difference between those
istributions under the normal assumption. While a reasonably close
roposition for the data used in our experiments, this limits our
odel’s ef fecti veness when directly transferred to markedly non-
aussian data sets. In such cases, the spread of predictions through

he variance would still be enforced, but in the case of, for example, a
tarkly multimodal distribution, the recreation of these distributional
eatures would not be a major component of the optimization. This
s also the reason for concerns co v ered in Section 2.4 with regard
o potential ne gativ e effects on the mean accuracy, for example in
ase of strongly skewed distributions. Such ne gativ e effects are not
resent in our results, but could be argued to be a more rele v ant
oncern for starkly non-normal distributions in other research. 

One point that should be discussed beforehand is the impro v ement
n MSE, R 

2 , and ρ values in Table 2 . While no decrease in
hese key performance indices, as covered above, shows that the
istributional constraint allows for retaining the level of accuracy
chieved only through the inclusion of the SHMR, an improvement is
ot immediately intuitive, as the KLD component targets the scatter
eproduction, not the predictive accuracy. The underprediction of
ails is a common problem in the application of machine learning

odels to predict baryonic properties from dark matter halo infor-
ation; this is the case not only in this research, but also in other

ublications, as mentioned abo v e. 
One possibility is that a more accurate distribution that places

he data and predictions within the same range reduces, on average,
he point-by-point error through a more accurate distribution width.
nother reason could be found in the reduced underprediction of

ails, which can be viewed as a subcase of the first possibility, as it
esults in a decreased potential for errors stemming from a lack of
ccurate predictions in these regions. 

As the comparison needs to be reasonably fast, approaches such
s Bayesian mixture models as well as associated methods that are
ore complex (see, for example, Moews & Zuntz 2020 ) are likely

o slo w do wn the training process too much. As a compromise, a
DE, also known as the Parzen–Rosenblatt window after Rosenblatt

 1956 ) and Parzen ( 1962 ), can be used, although this is limited to
ower dimensionalities. We propose two ways to circumvent the latter
imitation. The first is applying 1D KDEs on a v ariable-by-v ariable
asis and then averaging the KLDs between these estimates. While
he advantage is the good fit in R 

1 , this can lead to a subset of variables
NRAS 527, 3381–3394 (2024) 
ot being forced to follow the target distribution as long as the KLD
verage remains small. 

The alternative is to make use of dimensionality reduction meth-
ds such as principal component analysis, which collapses the n -
imensional coordinate space, for n variables, into orthogonal vectors
anked by their ability to explain the variance (for a recent o v erview,
ee Jolliffe & Cadima 2016 ). Reducing the coordinate space to a
ubspace in R 

2 would, for example, still allow for reasonably good
DE approximations while retaining each variable’s contribution to
 combined KLD. The same line of thought does, of course, also
pply to other density approximation and dimensionality reduction
ethods. 

 C O N C L U S I O N  

n this paper, we transfer the paradigm of PINNs to predicting
aryonic properties for associated dark matter halo variables. We
dapt this approach in two different ways. The first includes the
HMR, a double power law previously used to parametrize the

nstantaneous baryon conv ersion efficienc y. While this is a more
stablished way to include physical theory into PINNs, our second
xtension is the enforcement of baryonic scatter in simulations
nder a normal assumption using the KLD between the underlying
osmological simulation and predictions. In doing so, and separately
rom impro v ements in the mean accurac y of predictions, we solv e
he common problem of scatter reproduction in this area, which is
erged directly into the machine learning model. 
We first test the impro v ement for the more traditional approach

o PINNs, meaning the injection of physical domain knowledge
nto the loss function, and demonstrate a positive effect on the
odel’s performance. The hybrid approach combines these strengths

y including the measurement of distributional differences and
utperforms the standard PINN model. Subsequent tests of the
catter retrie v al sho w more faithful reproductions for baryonic
roperties. These impro v ements in scatter are especially notable
or molecular hydrogen masses and SFRs but can also be seen for
eutral hydrogen masses and metallicities. In particular, our model
uccessfully reco v ers the fundamental metallicity relation. 

Our experiments demonstrate that PINNs, a rapidly expanding
rea of research across various subfields of physics, offer a way to
irectly bake theoretical constraints and distributional adherence into
eural network architectures when painting baryonic properties into
alactic dark matter haloes. As such, they can be used to complete
osmological N -body simulations based on full hydrodynamic sim-
lation suites, although this comes with the same caveats as other
esearch in this area. 

The inference of physics from simulations operates under the as-
umption that such simulations are a sufficiently close approximation
f the real world. Any machine learning models learning from those
imulations are subject to the same assumption. That said, including
hysical models in the learning process enables these algorithms
o include domain information beyond the underlying cosmological
imulations. 

Potential follow-ups include additional physical models specific
o galaxy formation and evolution into the loss function, and further
onstraints based on observational data or other simulations to
iversify the data sources. Our presented framework is widely
pplicable to large-scale cosmological simulations and the study
f the utility and effect of physical domain knowledge on galaxy
volution emulators. It provides a further piece in the puzzle of fully
sing modern machine learning in astrophysics. 
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