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The Beam Energy Scan Theory (BEST) collaboration’s equation of state (EoS) incorporates a 3D Ising model
critical point into the Quantum Chromodynamics (QCD) equation of state from lattice simulations. However,
it contains 4 free parameters related to the size and location of the critical region in the QCD phase diagram.
Certain combinations of the free parameters lead to acausal or unstable realizations of the EoS that should not
be considered. In this work, we use an active learning framework to rule out pathological EoS efficiently. We
find that checking stability and causality for a small portion of the parameters’ range is sufficient to construct
algorithms that perform with >96% accuracy across the entire parameter space. Though in this work we focus on
a specific case, our approach can be generalized to any EoS containing a parameter space–class correspondence.

I. INTRODUCTION

The phase diagram of nuclear matter, while widely stud-
ied, remains mostly unknown. It has been established from
lattice simulations of Quantum Chromodynamics (QCD) that
the transition from hadronic to quark degrees of freedom is
a crossover at vanishing baryon chemical potential [1]. Ef-
fective models predict this transition will become first-order
at finite densities (for a review see Refs. [2, 3]). Since
large-scale, first-principle lattice QCD calculations cannot yet
be performed directly at finite baryon density, experimental
searches for the critical point (CP) and a first-order phase tran-
sition are vital in determining the phase structure of QCD at
different densities. Preliminary results from the first phase
of the Beam Energy Scan (BES-I) program at the Relativistic
Heavy-Ion Collider (RHIC) showed promising trends in the
data [4–6]. These will be confirmed or disproved during the
second phase of the program, BES-II, which ran through 2021
with improvements to detectors and statistics. The determina-
tion of the phase structure of QCD, along with the existence
and location of its critical point, remains among the most im-
portant goals of high-energy nuclear physics in view of re-
sults from BES-II [7–11]. At even lower beam energies, the
HADES (High Acceptance Di-Electron Spectrometer) exper-
iment is searching for a first-order phase transition to support
the presence of a critical point [12].

Previously, a key factor limiting research of critical signa-
tures on the theoretical side was the lack of an equation of
state (EoS) including a critical point in the correct univer-
sality class and matching what is already known from lattice
simulations. Such an EoS is now available and ready to be
implemented in hydrodynamic simulations at BES-II energies
[13, 14]. Results from such simulations are essential for the
analysis of BES-II measurements, because they can provide
precise calculations of higher order net-proton cumulants as
functions of the collision energy

√
sNN – promising experi-

mental signatures for criticality [11, 15–17]. Moreover, they
could help quantify the likelihood that such signatures survive
final hadronic scatterings. A first effort in that direction was
presented in Ref. [18], where the effects of a critical point
on the fourth order baryon number susceptibility χB

4 , acces-
sible experimentally via net-proton kurtosis measurements,
were studied in the context of the parameterized EoS intro-
duced in Ref. [13]. Much work needs to be done before direct
theory-to-experiment comparisons can be made, including ad-
justments in hydrodynamic calculations near the critical point
[17, 19–22]. Once these modifications are quantified, the EoS
in Ref. [13] would allow for a precise survey of collisions at
BES-II energies.

The procedure described in Ref. [13] is based on combin-
ing a critical point in the 3D Ising model universality class
and lattice QCD results in the form of a Taylor expansion.
This requires the Ising variables (r, h) – reduced temperature
r and magnetic field h, respectively – to be mapped to QCD
variables (T, µB) – temperature and baryon chemical potential,
although the nature of this mapping is not fixed from first-
principles. One is free to choose a map, which might lead
to a particular parameterization of the EoS that is not ther-
modynamically stable and causal by construction. Therefore,
a filtering of viable equations of state must take place post
EoS computation. In order to do this, a number of thermo-
dynamic quantities must be calculated across the phase dia-
gram, and then thermodynamics inequalities must be verified
for all (T, µB). A machine-learning (ML) assisted classifica-
tion would clearly provide a computational advantage if the
process of computing and checking multiple quantities over a
grid could be eliminated. The choice to eliminate these steps
is motivated by the fact that all thermodynamic quantities rel-
evant for stability analyses are directly related to derivatives
of the pressure. Therefore, all the information needed is en-
coded in the pressure itself. Moreover, for the EoS presented
in Ref. [13], once the lattice input is chosen, the properties
of the EoS are dictated solely by the input parameters, which
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can in turn be mapped to stable and causal, acausal, and un-
stable realizations of the EoS. This second option, using input
parameters instead of the pressure to determine stability and
causality, allows one to bypass the computation of the EoS en-
tirely once a ML model learns the acceptable parameter space
regions.

In addition to using traditional supervised learning to tackle
the EoS stability and causality problem, we incorporate active
learning [23] into the training pipeline, and compare the per-
formance of models trained in different frameworks. In ac-
tive learning, ML models place queries and request labels for
points that are considered most informative; this leads to a
significant reduction in the class labeling cost (normally as a
logarithmic factor), and a speed up in training, as queries are
likely to be placed over points located close to the decision
boundary separating examples of different classes. For a re-
view on active learning and query strategies see Refs. [24–26].
In this work, we implement active learning to expedite learn-
ing the map between the parameter space and output class.
The problem of determining the acceptable parameter space
range for a high-dimensional model using active learning has
been shown to work effectively in Ref. [27].

With the goal of developing a tool that can quickly rule out
pathological EoS, we train a set of classifiers to identify ther-
modynamically stable and causal realizations of the EoS. We
start by defining two viable options for the training data – one
consisting of the set of input parameters, and the other being
the pressure as a function of temperature and baryon chemi-
cal potential. We then select a set of competitive learning al-
gorithms – random forests (RF), K-nearest-neighbor (KNN),
and support vector machines (SVM) – and train them on the
EoS input parameters using both active learning and random
sampling [28–30]. We find that active learning [24] outper-
forms random sampling in every case, but the random forests
model is the only one that converges to high accuracy within
the number of training samples generated. We then train a
different random forests classifier using a dimension-reduced
version of the pressure – rather than the EoS input parameters
– as training data, using both active learning and random sam-
pling. The random forests classifier trained on the pressure
data using active learning converges even faster and to higher
accuracy than the previous random forests model. This sys-
tematic exploration of learning and sampling models yields
a particular combination that is optimal for the task of ther-
modynamic stability classification of the EoS model. Lastly,
we demonstrate how one of the top performing classifiers can
be used to map the stable and causal regions of this particu-
lar EoS formulation, which can in turn inform theoretical and
experimental studies of the QCD critical point.

We note that various machine learning algorithms have
been previously used in the context of heavy-ion collisions
[31–38], but we are not aware of other works that have
been used to constrain the parameter space of possible crit-
ical points through thermodynamic stability. Previous well-
known examples are an attempt to identify new signatures
of the QCD phase transition [31, 34] or classify jets origi-
nation from quarks vs. gluons [38, 39]. We are also not
aware of previous investigations in the context of heavy-ion

collisions that have used active learning (though it has been
employed in other contexts in nuclear theory [40] and high-
energy physics [27, 41, 42]). For a recent review of artifi-
cial intelligence and machine learning applications in nuclear
physics, see Ref. [36].

The paper is structured as follows. Section II summarizes
the methodology introduced in [13] for generating a realiza-
tion of the EoS. In Section III, we discuss how thermodynamic
stability and causality issues can arise in the EoS formulation,
the possible formats of the training data, as well as the prepro-
cessing framework. In Section IV, we outline the basic ideas
behind active learning and our query strategy. Section V deals
with the implementation of our training and sampling methods
in the development of the classifiers. Results and conclusions
follow.

II. PARAMETERIZED EOS WITH A CRITICAL POINT

Due to the fermion sign problem, direct lattice simulations
at finite chemical potentials are not possible at the moment.
The most straightforward way to work around this problem is
to define a Taylor expansion around µB = 0. For the equa-
tion of state, this commonly consists of an expansion of the
pressure as:

P
T 4 (T, µB) =

∑
n

cn(T )
(
µB

T

)n
(1)

where the coefficients are related to the derivatives of the pres-
sure with respect to the chemical potential:

cn(T ) =
1
n!
χB

n (T ) =
1
n!
∂n(P/T 4)
∂(µB/T )n . (2)

The BEST Collaboration’s family of EoS of Ref. [13] was
constructed by incorporating a critical point from the 3D Ising
model universality class, and imposing exact matching with
lattice QCD results at µB = 0 (up to order O(µ4

B)).
We summarize here the steps followed in Ref. [13] for gen-

erating each EoS:

i) Define a parameterization of the 3D Ising model EoS in
the vicinity of the critical point. This parameterization
imposes the correct critical behavior by expressing the
magnetization M, the magnetic field h and the reduced
temperature r = (T −Tc)/Tc, where Tc is the critical tem-
perature, in terms of new parameters (R, θ) with [43–46]:

M = M0Rβθ ,

h = h0Rβδh̃(θ) , (3)

r = R(1 − θ2) ,

where M0 ' 0.605 and h0 ' 0.364 are normalization
constants, h̃(θ) = θ(1+aθ2 +bθ4), with a = −0.76201 and
b = 0.00804, and β ' 0.326, δ ' 4.80 are 3D Ising model
critical exponents [44]. The parameters satisfy R ≥ 0 and
|θ| ≤ θ0, with θ0 ' 1.154.
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ii) Map the phase diagram of the 3D Ising model onto that
of QCD, in a way that allows one to choose the location
of the critical point. This mapping can be done using a
simple linear map, which requires six parameters [47]:

T − TC

TC
= w (rρ sinα1 + h sinα2) , (4)

µB − µBC

TC
= w (−rρ cosα1 − h cosα2) , (5)

where (TC , µBC) indicate the location of the critical point,
while (α1, α2) are the angles between the horizontal (T =

const) lines on the QCD phase diagram and the h = 0
and t = 0 Ising model axes, respectively. The size of
the critical region is roughly determined by the scaling
parameters w, ρ in the Ising-to-QCD map [18, 48].

The number of free parameters is reduced from six to four
by imposing that the critical point is located on the chiral
transition line predicted by lattice QCD:

T = T0 + κ2 T0

(
µB

T0

)2

+ O(µ4
B), (6)

which fixes the value of TC and α1, given a choice of µBC .

The lattice QCD input for the pressure and its deriva-
tives at µB = 0 is from the Wuppertal-Budapest Collab-
oration [49, 50], and the QCD transition line is assumed
to be a parabola with curvature κ2 = −0.0149, as esti-
mated in Ref. [51]. This is a valid assumption in the
range of chemical potentials covered by the BEST EoS
and the BES-II program. Although more recent results
have since become available, determining the “hyper-
curvature” κ4 [52, 53] of the transition line, it is found
to be consistent with zero within errors.

iii) Impose that the EoS exactly matches lattice QCD at µB =

0 by requiring that the expansion coefficients determined
from the lattice are a sum of a contribution from the crit-
ical point, and a “regular” one

T 4cLAT
n (T ) = T 4cNon-Ising

n (T ) + T 4
CcIsing

n (T ) , (7)

where cLAT
n are the coefficients calculated from the lat-

tice, and cIsing
n determine the contribution from the critical

point. The coefficients cNon-Ising
n contain the contribution

to the thermodynamics at µB = 0 not due to the critical
point. The procedure is carried out up to order O(µ4

B).

iv) Reconstruct the full QCD pressure as the sum of the
“Ising” and “Non-Ising” contributions

P(T, µB) = T 4
∑

n

cNon-Ising
n (T )

(
µB

T

)n
+ PQCD

crit (T, µB) , (8)

where PQCD
crit (T, µB) is the critical pressure mapped onto

QCD from the 3D Ising model. For additional details we
refer to Ref. [13].

With the construction just summarized, the pressure in
Eq. (8) only depends on the non-universal mapping between
the 3D Ising model and QCD, which is ultimately fixed by the
parameters µBC , αdiff = α2 − α1, w, and ρ. The complete ther-
modynamic description is in turn obtained by computing the
baryon number density

nB(T, µB)
T 3 =

1
T 3

(
∂P
∂µB

)
T
, (9)

entropy density

s(T, µB)
T 3 =

1
T 3

(
∂P
∂T

)
µB

, (10)

energy density

ε(T, µB)
T 4 =

s
T 3 −

P
T 4 +

µB

T
nB

T 3 , (11)

and speed of sound

c2
s(T, µB) =

(
∂P
∂ε

)
s/nB

, (12)

all of which are normalized by the correct power of the tem-
perature.

More recently, this formulation has been updated to account
for strangeness neutrality, which is relevant in heavy-ion colli-
sions [14]. In this work, we implement the original description
of the EoS, assuming vanishing net strangeness and electric
charge chemical potentials, µS = µQ = 0.

III. TRAINING

Developing a successful classifier requires a thoughtful se-
lection of training data. We can think of the EoS framework
as a set of two maps:

(µBC , αdiff,w, ρ) 7→ P(T, µB) 7→ {acceptable, unstable, acausal}.
(13)

The first map yields the pressure as a function of temper-
ature and chemical potential. The second map determines if
the resulting EoS is acceptable or not. Fig. 1 illustrates how
different realizations of the EoS can present pathological be-
haviors.

We use both the input parameters and a dimension-reduced
version of the pressure for training. It is important to investi-
gate how the choice of training – on either the input parame-
ters or pressure – map to stable EoS, because the two spaces
relate to thermodynamic stability in fundamentally different
ways. The key difference is that models trained on input pa-
rameters are constrained to this particular formulation of the
EoS, while training on the pressure can yield ML models that
generalize to any QCD EoS. However, we will not test how
training on the pressure can be applied to alternative EoS since
that is beyond the scope of this paper. In this work, we focus
on establishing that it is possible to train ML classifiers that
identify viable EoS quickly and with high accuracy. Below
we discuss how the labels for the training set were created
and how the data was processed prior to training.
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FIG. 1. Different realizations of the EoS pertaining to the three thermodynamic stability classes. The black line illustrates the first-order
transition line, which ends at the critical point. The projected T − µB plane is also shown, on which the points where some pathological
behavior appears are highlighted (purple corresponding to causality violations and red to negativity of the second-order baryon susceptibility).

A. Thermodynamic Stability

There are four free parameters that emerge from our con-
struction of the EoS that can lead to pathological behavior.
Hence, thermodynamic stability needs to be verified at the
end of the procedure, once all thermodynamic quantities have
been calculated. In general, we require the positivity of the
pressure, entropy and baryon density, the second order baryon
susceptibility (χB

2 ), and the heat capacity (∂S/∂T )nB

P, s, ε, nB, χ
B
2 ,

(
∂S
∂T

)
nB

> 0 , (14)

which follows from the requirement that entropy should be
maximized in equilibrium. We also require that the speed of
sound squared must be both positive and bounded by causality

0 ≤ c2
s ≤ 1. (15)

All of these must be satisfied at every point in the (T − µB)
plane. As mentioned in Section I, there are two options for
training data – using the pressure, which encodes all the infor-
mation regarding stability and causality, or the input parame-
ters which map to a particular EoS. In both cases, some num-
ber of training samples need to be generated. These must go
through the numerical differentiation and grid checking pro-
cess to be labeled. Generating a single EoS with a complete
thermodynamic description and label can take between 1.2-4
times as long as generating the pressure only. While this ap-
proach reduces computation time and memory requirements,
the difference is even more dramatic if we use the input param-
eters as training data. No calculation is required for generating
an unlabeled sample of the parameter space – we simply select
points from the parameter space grid. The runtime is negligi-
ble compared to how long it takes to generate a realization of
the EoS.

B. Preprocessing

Let us first discuss the dimensionality of our problem at
each stage of the mapping described in Eq. (13). We de-
fine a single set of input parameters as a training vector

~Ω(i) = (µB(i), αdiff(i),w(i), ρ(i)). Each ~Ω(i) is four-dimensional, so
we do not need to apply dimensionality reduction techniques.
The only pre-processing required is a standard scaling of the
distribution of ~Ω(i) in the training set. This is necessary to en-
sure the different features are compared along the same scale,
to avoid artificially introducing differences in the data, and to
ensure the pool and test set are analyzed with respect to the
training distribution. We discuss the role of the pool, training,
and test sets in the next section.

In the next step of our mapping, P(T, µB) has dimensions
corresponding to the grid size of the EoS. In our case, the
limits are

30 ≤ T [MeV] ≤ 800 (16)
0 ≤ µB [MeV]≤ 450 (17)

with a step size of 1 MeV in both directions. Thus, P(T, µB)
is a table of dimension 451 × 771. A grid of this magnitude is
not optimal for machine learning. We use the standard tech-
nique of Principal Component Analysis (PCA) [28, 29, 54]
to create a dimension-reduced projection of the original ma-
trix defined by P(T, µB). We check how many components are
needed to account for most of the variance present in the pres-
sure; our results show that the two-component projected ma-
trix accounts for over 99% of the variance in nearly all cases.
Based on these findings, we define a new variable, P∗, with
about 1500 features corresponding to the two columns of the
two-dimension projection matrix from the PCA. This is by no
means a low-dimension feature space, but it is easily handled
by most machine learning algorithms.

The final stage of the learning pipeline classifies the input
EoS as either acceptable, unstable and acausal, or acausal,
with no signs of instability (3-dimensional output space).

IV. SAMPLING

Since the parameter space for our model is continuous, we
first discretize it by defining a grid in each parameter within
a range of interest. The bounds and step-sizes for each pa-
rameter are summarized in Table I. The bounds in µBC are
motivated by lattice QCD constraints. The upper bound is
informed by the fourth order Taylor expansion of lattice data



5

used in Ref. [13], which breaks down at µB ' 450 MeV. While
there is no limit to how close the critical point can be placed
to vanishing chemical potentials by construction, lattice re-
sults indicate that the region µB / 2T is not likely to contain
a critical point [55]. The lower bound in µBC is loosely de-
termined by these results and based on lattice calculations for
the crossover temperature T0 ' 155 MeV at µB = 0 [56–
59]. Since the curvature of the deconfinement transition line
appears to be negative, we can safely expect that the critical
temperature TC / 155 MeV. Lattice results then roughly rule
out µBC / 300 MeV, but we extend this lower bound down to
220 MeV to accommodate for possible uncertainties in these
values. The other three parameters are specific to the linear
map assumed in the construction of the EoS and no arguments
from first-principles constrain their values, so the correspond-
ing bounds are designed to span all possible behavior. Broadly
speaking, it was observed already in Ref. [13] that, with all
other parameters fixed, when a certain choice of w was found
to be pathological, then the same occurred for all w′ < w. The
opposite behavior was observed for a pathological EoS with
a certain ρ – with all other parameters fixed, all ρ′ > ρ were
pathological.

Every time a model is initialized, an initial training and test
sets are generated from the parameter grids, containing 350
and ∼ 20, 000 labeled realizations of the EoS, respectively.
The initial training set is chosen randomly at the beginning of
each training cycle from the remaining points (which consti-
tute the pool set), so that there is no overlap between test and
training sets. The initial training set contains the first labeled
realizations from which the model will learn. More instances
are added to the training set with each iteration. The test set
remains the same throughout all training iterations and it is
used to check the accuracy of the model at each stage.

Once the initial training set L0 has been determined, we
take the following steps:

1. A machine learning model is trained on L0.

2. The model makes a prediction on the test set and its
performance is recorded (for reporting purposes only).

3. The model is then evaluated onU0, the pool set, which
contains all points in neither L0 nor the test set. These
points are unlabeled.

4. Using some selection criterion, a query is generated.
This means a size-k pool of points is selected from U0
according to some distribution, and a label is provided
for these points.

5. The training and pool sets are updated. The new train-
ing set L1 contains L0 and the queried points, which
are now missing from the updated pool setU1.

6. The model is trained on L1 and steps 2-5 are repeated
until a stopping criterion is met.

We expect to see the average recorded accuracy increase as
sample size increases until the model converges at some maxi-
mum accuracy value, or until resources for generating labeled

TABLE I. Ranges and step-sizes used to generate EoS for training
and testing.

Min. Max. Step size
µBC 220 MeV 420 MeV 20 MeV
w 0.1 10.0 0.5
ρ 0.1 10.0 0.5
αdiff −180◦ 180◦ 5◦

instances have been exhausted. This should happen indepen-
dently of the selection criterion. However, if labeled samples
are difficult (e.g. computationally costly) to generate, an im-
proved sampling method can provide an advantage in terms
of how many samples are needed to achieve a target perfor-
mance. Active learning methods seek to increase the perfor-
mance of learning algorithms with fewer samples by allowing
models to choose which data to learn from.

We test the performance of our models using both ran-
dom sampling and active learning. We draw our samples in
a pool-based fashion, meaning queries consist of size-k sam-
ples drawn from U. In the random case, the samples are
randomly pulled from U assuming a uniform distribution.
Margin-based queries select the k points currently in the pool
setU with the smallest margin values, where the margin M is
defined as in Ref. [60],

M = P(ŷ1) − P(ŷ2) (18)

and ŷ1 and ŷ2 are the first and second most probable class la-
bels under the current model, with corresponding probabil-
ities P(ŷi). Therefore, this sampling method favors points
with a small margin, meaning the classification is ambiguous,
whereas points where one class is clearly preferred do not get
labeled. Using this query strategy avoids wasting resources
on instances the model already understands how to classify
in favor of those that are still ambiguous. It is important to
note that, although we make the choice to fix each query at
k = 200 samples (i.e. each iteration in training represents the
same increase in training set size) that choice is in principle
arbitrary.

V. MODEL TRAINING AND SELECTION

The main goal in the model training and selection stage is
to gauge what is necessary to create a strong EoS classifier
– how much data is needed, how to sample from the avail-
able data, and how to make a choice for the classification al-
gorithm. Generally, the amount of data needed is measured
according to the accuracy of the classifier on the test set, but
it could also be limited by computational resources. The pref-
erence for a sampling method is determined based on whether
random sampling or active learning reached higher accuracy
at a lower number of samples (e.g. 95% test set accuracy rate
at 5,000 samples is better than a 95% rate at 7,000 samples).
The best model is then the combination of algorithm plus sam-
pling method that reaches the highest accuracy rate with the
fewest possible samples.
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FIG. 2. Flowchart of model development and testing. From an initial grid of interest, three sets are created – an initial training set and a test
set (each containing labeled realizations of the EoS), and a pool set, which contains all the points outside the test or initial training sets. With
each iteration the performance of the classifier is recorded, and a new set of points from the pool set is labeled and moved to the training set.

We select three classification algorithms as mentioned in
Sec. I – SVM, RF, and KNN – and train them using the sam-
pling framework described in Sec. IV. The sampling and train-
ing procedures are summarized in Fig. 2. We used the open
source library scikit-learn [61] and the publicly available im-
plementation in Ref. [62] to develop the code used in this
work. Sampling is performed as outlined in Section IV. Ad-
ditionally, at each training step, the model’s hyperparameters
are optimized over a random grid search using 5-fold cross-
validation on the training set. This step is crucial since the
training set changes with each iteration and the hyperparam-
eters need to be readjusted. Details about the hyperparam-
eters for each model can be found in the documentation for
Ref. [61], and the specific grid search used in this work is
available in the source code [63].

For RF and KNN methods, training is set to stop at 10,000
samples, regardless of accuracy levels, in order to constrain
computational expenses. For SVM models, the run-time
scales with the cubic power of the number of training sam-
ples, and training is set to stop at 2,500 samples instead. To
deal with the cold start problem we randomly select a new
initial training set with each new run. The cold start problem
refers to the expected model instability when faced with data
scarcity, which is common when using active learning on a
small sample [64, 65]. We also do not throw away any la-
bels during training. Once a point is labeled, the label is kept
and recycled if the same point is called again by the sampling
algorithm in a different run.

We perform a total of 25 experiments – 5 repetitions for
each of the learning algorithms (RF, SVM, KNN), using ei-
ther random sampling or active learning on the input param-
eter vector ~Ω(i), and 5 repetitions for RF using either random
sampling or active learning on the dimension-reduced version
of the pressure P∗. For each combination, we take the mean
accuracy at each training set size with a 1σ deviation band.

VI. RESULTS

This section is divided into two parts – the first addresses
the development and selection of an adequate machine learn-
ing model for the EoS classification problem, as well as the
performance of active vs. traditional learning implementa-
tions. Secondly, we discuss the deployment of the best-
performing model, what is learned about the correspondence
between EoS parameter space and stability classes, and impli-
cations for the modeling of heavy-ion collisions and experi-
mental searches for the QCD critical point.

A. Model development

The primary aspect of developing a machine learning model
is to track how performance evolves during training. Fig. 3
shows test accuracy as a function of training set size for each
class of models trained on only the input ~Ω(i) data (recall that
we distinguish this from training directly on the EoS itself
that is signified by P∗). The solid and dashed lines represent
the average behavior for a class of models across 5 runs with
random sampling and active learning, respectively, and a cor-
responding 1σ uncertainty band. Generally, a performance
measure, which in this case is the recorded test set accuracy,
is expected to improve on average as the number of training
samples increases. We also re-emphasize that, during train-
ing, the model is completely blind to the test set and there is
no overlap between test and training points. From Fig. 3, it
is clear that active learning provides a significant advantage
for RF and KNN models. In the SVM case, there is an initial
advantage that vanishes when the training set reaches a size of
∼700 samples.

We are interested in the combination of input data, sam-
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FIG. 3. Average performance on the test set as a function of training
set size. The black lines correspond to the performance of models
trained using random sampling and the dashed blue lines correspond
to models trained using active learning. The bands show 1σ devia-
tions from the average.

pling, and learning algorithm that performs best given the con-
straints set for label acquisition. From Fig. 3, we see that RF
coupled to active learning clearly outperforms other models,
with test set accuracy quickly converging around 96% and ex-
hibiting small variability. This agrees with our understanding
of the benefit behind ensemble methods, where voting over
multiple (nearly uncorrelated) models tends to reduce the bias
and the variance component of the error significantly, see for
example Refs. [28–30, 66, 67] for an in-depth discussion on
the bias-variance trade-off in machine learning.

Although a consistent final accuracy of 96% is good enough
for most applications of learning algorithms, we wanted to
investigate if an even higher accuracy could be achieved us-
ing the dimension-reduced pressure P∗ as the training data.
Because generating P∗ and training models using it as input
is significantly more computationally expensive than the pre-

FIG. 4. Accuracy on the test set for RF models trained on input
parameters coupled to random (solid black) and margin (dashed blue)
sampling methods. This is compared to RF models trained on the
transformed pressure coupled to random (solid green) and margin
(dashed orange) sampling methods.

vious case, we limit this analysis to RF algorithms. This is
expected considering the complexity cost behind SVM and
KNN (for small K). As an example, SVMs are mathematically
represented by a convex optimization problem. Ensemble
methods like random forests, gradient boosting, bagging and
others [28, 68] normally use shallow decision trees as weak
learners. Such decision trees are easy to train and require nor-
mally less CPU cycles than convex optimization problems like
SVMs, which involve affine transformations with dense matri-
ces.

We compare the performance of RF models using different
training data in Fig. 4, which shows the accuracy on the test
set as a function of the training set size during training. The
dashed orange and solid green lines correspond to margin and
random sampling, respectively, using P∗ as input. The dashed
blue and solid black lines correspond to margin and random
sampling, respectively, using ~Ω(i) as input. The matching
bands represent a 1σ deviation from the mean performance
over 5 runs. For both input classes, active learning outper-
forms random sampling. Surprisingly, when RF algorithms
are trained using P∗, they outperform RF models trained on
~Ω(i) using active learning in all stages of training. The classi-
fier performs even better when trained on P∗ with active learn-
ing, consistently achieving nearly perfect accuracy with under
3,000 samples in the training set.

This increase in accuracy is likely due to the nature of the
map between the different input spaces and the EoS classes.
The map between ~Ω(i) and the stability classes is highly non-
linear, whereas in P∗ space, the transition between classes is
likely simpler to model in terms of input variables. Regard-
less, a strong classifier can be achieved with either set of input
data. Using P∗ sacrifices the computational advantage over
non-ML classification for near perfect classification accuracy,
while models trained on ~Ω(i) peak at slightly lower accuracy,
but with a significantly lower computational cost. We discuss
execution-time benchmarking in detail in Sec. VI B 1.

The summary of predictions on the test set is given by the
confusion matrix [69] of the model. In Fig. 5, we show the
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FIG. 5. Confusion matrix averaged over the final random forests
models’ performance on the test set, after training with Ω(i) (top) or
P∗ (bottom).

confusion matrix for both classes of models with active learn-
ing, where the columns represent the true class (as calculated
thermodynamically), and the rows indicate the class predicted
by the model. We normalize the number of points in each
entry by the total number of points in the test set, and show
the corresponding percentage. The diagonal elements are the
percentage of points that belonged to a certain class and were
classified correctly by the model. Correspondingly, the off-
diagonal elements quantify the percentage of points in the test
set that were misclassified by the model.

From Fig 5, we see that acausal EoS are the most prob-
lematic class for models trained on ~Ω(i). Out of the aver-
age 4.33% of points that were misclassified, an average total
of 2.07% were incorrectly predicted to be acausal, while an-
other average 1.906% of points that were acausal ended up
misclassified as either acceptable or unstable. Combined, ac-
ceptable/unstable points being incorrectly classified as acausal

and, on the other hand, acausal points being incorrectly clas-
sified as acceptable/unstable account for 92% of misclassifi-
cations on average. If we break down the confusion between
acausal and acceptable/unstable individually, we see that most
incorrectly classified acausal points are, in reality, unstable,
and vice-versa.

In the context of the EoS parameter space, this means
that there is a clear distinction between acceptable and
acausal/unstable EoS, but the boundary between acausal and
unstable can become fuzzy in certain regions. In this aspect,
using P∗ as training input seems to help, but not significantly.
As shown in Fig 5, out of the average 2.07% of points that
were misclassified, confusion in acausal classifications ac-
counts for 77.4% of the mistakes.

In practice, the most important aspect of the confusion
matrix analysis is to evaluate the prevalence of false posi-
tives/negatives. A false positive would be an EoS that is un-
stable/acausal, but gets incorrectly classified as acceptable. A
false negative is an acceptable EoS that gets incorrectly clas-
sified as unstable/acausal. From Fig. 5, we see that the false
negative and positive rates for the models trained on ~Ω(i) are
on average 1.316% and 0.989%, respectively. In the P∗ cases,
the average rates are 0.371% for false negatives and 0.697%
for false positives.

The incidence of false positives/negatives for the class of
models trained on P∗ is about half of those trained on the input
vectors, but in either case these rates are low enough for most
applications. In general, models taking in P∗ are more suitable
for analyses that require knowledge of a specific point, since
the overall accuracy is higher. However, models trained on
~Ω(i) still provide an accurate description of the EoS parameter
space and class structure.

B. Model Deployment

In addition to training and comparing the performance of
different classes of models, we illustrate a deployment frame-
work by analyzing the features of the EoS parameter space
relevant to experimental searches for the critical point. The
analysis was done using the top performing model in terms
of classification accuracy and execution time, namely random
forests trained with active sampling and input vectors ~Ω(i).
From here on, we will refer to this model as RFA

Ω
, where RF

stands for random forests, A for active learning, and Ω refers
to the type of training data.

1. Execution time benchmarking

One of the important metrics when choosing a model for
deployment is accuracy. The RFA

Ω
model yields a final test set

accuracy of 96.772 %. This is not as high as the models that
were trained on P∗. However, it is important to also keep track
of the execution time. Machine learning assisted classifica-
tion, if implemented appropriately, should yield a significant
computational advantage. Without ML assistance, the classi-
fication of EoS stability is O(1− 2) in seconds. The execution
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FIG. 6. Top panel: execution time per sample on a log scale as a func-
tion of the total number of samples with ML classification. Bottom
panel: speed factor gained using ML versus conventional classifica-
tion. In both cases the error bars represent a 68% confidence interval
based on jackknife resampling of 50 samples.

time of ML-assisted classification can be calculated as a per
sample rate, classifying a certain number of samples in bulk,
then dividing the total execution time by the total number of
samples. This is shown in the top panel of Fig. 6, which dis-
plays the execution time in seconds per sample for RFA

Ω
classi-

fication as a function of the number of EoS classified. In order
to test the robustness of the model, we repeat this rate calcula-
tion 50 times and show the 68% confidence interval based on
jackknife resampling. The model consistently performs at the
microsecond scale.

In the bottom panel of Fig. 6, we show the speed gain factor
as a function of the number of EoS classified. This was cal-
culated by dividing the ML execution time per sample by the
non-ML classification time per sample. The same statistical
methods were used for constructing the confidence intervals.
RFA

Ω
assisted classification consistently provides a computa-

tional advantage of 5-6 orders of magnitude.

2. EoS Stability Analysis

The speed and high accuracy of RFA
Ω

allow us to map the
stability of the EoS as a function of input parameters in fine
detail. These parameters relate to key physical properties of
the QCD critical point. As discussed Sec. II, αdiff represents
the angular separation between Ising axes (r, h) in the mapping
to QCD variables, w globally scales the Ising axes – i.e. the
critical region – and ρ stretches the critical region along the
transition line (µB direction).

In Fig. 7, we fix µB = 400 MeV and determine the stabil-
ity/causality of the EoS for different values of the angular pa-
rameter αdiff as a function of the scaling parameters w and ρ on
a grid much finer than previous calculations [13]. From Fig.

FIG. 7. Stability and causality regions on the w−ρ plane for different
αdiff values at fixed µBC = 400 MeV. As the angular parameter moves
away from orthogonality, the stability region shrinks. An upper limit
appears for ρ, which drives EoS to acausal regions when too large.

7 it can be inferred that the stability region in the w − ρ plane
shrinks as the angular parameter moves away from orthogo-
nality, and that there is a hard limit on the value of ρ, which
drives the EoS to acausal regimes when too large. Hence, un-
der the current mapping, the critical region cannot be too large
in the µB direction.

The exact value of the ρ stability cut-off depends strongly
on the value of αdiff, but not as much on the global scaling of
the critical region determined by w. These results reflect the
underlying physics of the model [18]. The EoS with critical
contributions is matched to lattice QCD data by construction,
and these parameters can stretch the critical region along the
transition line to the point where the EoS cannot be simulta-
neously acceptable and consistent with lattice QCD. If either
αdiff or ρ spreads the critical region too broadly across µB, the
EoS will become acausal. Stability and causality also depend
on µBC , which is discussed below and in Section VI C.

Another point of interest is to maximize the overall size of
the critical region. This is reflected by the minimum value of
w, to which to the overall size of the critical region is (mildly)
inversely proportional. In general, one has ∆µB∆T ∼ w−2/7

[18], where ∆µB,T are the corresponding sizes of the critical
region in the T and µBC directions. Hence, despite the overall
size of the critical region only being midly affected by w, it
determines the largest possible critical region for a particular
choice of µBC , ρ, and αdiff. This analysis is shown in Fig.
8, which displays the smallest acceptable value w = w0 for
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FIG. 8. Smallest possible value w0 (largest global scaling of the crit-
ical region thermodynamically allowed) for different values of µBC

and ρ = 2 as a function of αdiff.

different values of µBC and fixed ρ = 2 as a function of αdiff.
We see that, as αdiff moves away from ± 90o (orthogonal Ising
axes), it drives the value of w0 up. In addition, as αdiff →

0, stability disappears entirely. The band where no EoS are
possible shrinks as we move µBC to larger values, as would
be expected since large µBC interferes the least with lattice
results at µB = 0. Most importantly, we see that regions of low
w0 appear at values of αdiff closer to 90o, meaning that these
regimes are compatible with a larger critical region. When
µBC is larger, the low w0 regions extend for longer in αdiff,
because moving the CP away from µB = 0 allows for a larger
CP to still be consistent with the matching to lattice QCD.
To summarize, we find that placing the critical point at larger
µBC guarantees the most flexibility in the possible size and
shape of the critical region. However, even when µBC is large,
the Ising axes cannot come too close together without causing
pathological behavior.

C. Correlations between input parameters in acceptable EoS

In the process of developing and training the ML models
presented in this work, nearly 40k realizations of the BEST
EoS were labeled. The pool of labeled EoS includes sam-
ples taken randomly and with active learning. Since active
queries oversample along the boundary, this collection of EoS
should strongly reflect the true stable and causal regions. By
selecting only the acceptable EoS from this pool, we can gain
insight on the distribution and correlations between input val-
ues in the stability/causality windows. The analysis of the
acceptable training samples is presented in this work as a tool

complementary to the ML models because the training data
reflects the true distributions and correlations between param-
eters for acceptable EoS. These samples should be studied be-
cause they display the trends ML classification should follow,
aside from providing a general intuition for the regime of ther-
modynamic validity of the EoS model.

The histogram for each input parameter is shown along the
diagonal in the corner plot in Fig. 9. We see acceptable EoS
are more likely to stem from larger values of µBC , values of
αdiff close to 90o, and lower ρ. There is not a strong depen-
dence on w, but the number of acceptable EoS decreases for
w . 1. The observations are in line with general arguments
on the size and shape of the critical region [18]. The peak
at ρ ≈ 2.0 is likely due to active learning, since this seems
to be the point where EoS in the intermediate angle regime
(10o ≤ αdiff ≤ 60o) become acausal. These findings are con-
sistent with what was found with ML-assisted classification
using RFA

Ω
.

The off-diagonal elements of Fig. 9 contain the pair-wise
density correlations between input parameters. As expected,
αdiff correlates strongly with other input parameters – a CP
further away from µB = 0 and smaller ρ allow for smaller an-
gles. However, αdiff is always above 5o, even when ρ is small,
and ρ is always below 5.0-6.0, even when αdiff is not small.
Thus, there is a limit for αdiff and ρ in the current implementa-
tion of this model, since we cannot place the critical point at a
larger value than µBC = 420 MeV due to limitations from lat-
tice QCD. There is not a strong correlation between stability
and w, because it is always possible to make the critical region
small enough to suppress unstable behavior. Furthermore, we
observe that larger critical regions (w / 1) only appear for
µBC > 300 MeV. This confirms the trends found by RFA

Ω
for

the subsets of the parameter space discussed in Section VI B 2.
In summary, µBC ' 300 MeV provides the most freedom,

but it always holds that ρ / 5.0 and αdiff ' 5.0o under the
current mapping. Recall that any pathological behavior of the
EoS is due to tension with lattice calculations. This is model-
dependent because of the choice of mapping between Ising
and QCD variables and the truncation of the lattice Taylor ex-
pansion. Changing either would affect the quantitative results
discussed in this work, which are specific to the EoS presented
in Ref. [13].

VII. CONCLUSIONS

The BEST collaboration EoS relies on a non-universal lin-
ear map of 3D Ising model variables onto the QCD phase di-
agram, which contains four free parameters. A subset of the
resulting four-dimensional parameter space leads to unstable
and/or acausal realizations of the EoS. In this work, we built
a machine learning framework that incorporates active learn-
ing to guide the model towards the most important regions in
the input parameter space; this helps to efficiently rule out un-
physical EoS with high accuracy. In addition to mapping the
stability and causality of the EoS as a function of the input pa-
rameters across the entire available parameter space, we find
that certain mapping parameters are constrained to αdiff ' 5o
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FIG. 9. Off-diagonal: pair-wise correlations between input parameters for acceptable EoS in the combined training set. Each plot shows the
density distribution for pairs of input parameters. Diagonal: Histograms for each parameter and its distribution in the class of acceptable EoS.

and ρ ' 5. Additionally, a strong preference for a critical
point at large baryon chemical potentials µBC is shown, es-
pecially when the critical region is large. Low µBC can only
coexist with significantly smaller critical regions. Although
these findings are quantitatively strongly dependent on the ac-
tual implementation of the BEST EoS, their qualitative nature
is likely to be quite general, as it essentially stems from the
(in)compatibility of the universal critical behavior and first-
principle lattice QCD results.

The insights presented in this work can be used in future
hydrodynamic studies of the evolution of matter created in
ultra-relativistic heavy-ion collision experiments at low beam
energies. Currently for heavy-ion collisions, it is not possi-
ble to directly compare the EoS to experimental data. Instead,
one must run relativistic viscous hydrodynamic simulations
with a large number of free parameters that are then directly
compared to experimental data. The free parameters are con-
strained using a combination of emulators and Bayesian anal-

ysis [70–74], which are limited by the enormous amount of
computational time required to run a single parameter set. The
results presented here significantly cut down the input param-
eter space, allowing for tighter priors in a potential Bayesian
analysis comparing heavy-ion hydrodynamics simulations to
experimental data.

This is the first time that active learning has been em-
ployed in the context of heavy-ion collisions. We demon-
strated that active learning can significantly reduce sampling
requirements for training classifiers to search for acceptable
EoS. Because of the speed and accuracy we reached in our
framework using active learning, our methodology promises
to be useful for a number of problems in the field of heavy-ion
collisions. Additionally, the machine learning pipeline devel-
oped in this work is generic enough that it can be applied to
any EoS with a parameter-space-to-class correspondence.
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