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Abstract

Understanding how matter behaves at the highest densities and temperatures is a major open problem in both
nuclear physics and relativistic astrophysics. Our understanding of such behavior is often encapsulated in the so-
called high-temperature nuclear equation of state (EOS), which influences compact binary mergers, core-collapse
supernovae, and other phenomena. Our focus is on the type (either black hole or neutron star) and mass of the
remnant of the core collapse of a massive star. For each six candidates of equations of state, we use a very large
suite of spherically symmetric supernova models to generate a sample of synthetic populations of such remnants.
We then compare these synthetic populations to the observed remnant population. Our study provides a novel
constraint on the high-temperature nuclear EOS and describes which EOS candidates are more or less favored by
an information-theoretic metric.

Unified Astronomy Thesaurus concepts: Nuclear astrophysics (1129); Neutron stars (1108); Stellar mass black
holes (1611); Astrophysical black holes (98); Astrostatistics techniques (1886); Core-collapse supernovae (304);
Computational astronomy (293)

1. Introduction

Neutron stars (NSs) are some of the densest observable
objects in the universe. They provide a laboratory to probe
matter at the highest densities—a major open problem in
astrophysics and nuclear physics. Understanding how matter
behaves at extreme conditions, i.e., the high-temperature
nuclear equation of state (EOS), is needed to predict and
analyze the gravitational wave signals from NS mergers, the
associated kilonova, pulsar properties, the outcome of core-
collapse supernovae (CCSNe), and many more.

Although the fundamental interactions are well understood,
the full many-body quantum-mechanics problem is currently
intractable. Moreover, this state of matter is not directly
accessible through terrestrial experiments (Lonardoni et al.
2020).

The traditional way of constraining the EOS is to examine
the relationship between the mass and radius of an NS (see,
e.g., Miller et al. 2019). Recent observational advances have
enabled many new studies. For example, the first detection of a
binary neutron-star merger by LIGO/VIRGO (Abbott et al.
2017) combined with the associated short gamma-ray burst
(sGRB), kilonova, and afterglow led to an inferred upper limit
of the allowed NS mass, Mmax, of 2.3–2.4Me (Margalit &
Metzger 2017; Rezzolla et al. 2018; Ruiz et al. 2018; Shibata
et al. 2019). Bayesian parameter estimation on the combined
observations of GW170817, AT 2017gfo, and GRB 170817A
provides a multimessenger constraint on the tidal deform-
ability, the total mass, and mass−radius pair for GW170817

(Coughlin et al. 2019). Light-curve modeling of X−ray burst
GS 1826−24 constrains the stiffness of the nuclear EOS
through the monotonic relationship between the NS radius and
the peak luminosity of the burst (Dohi et al. 2021).
Although there are large uncertainties (Even et al. 2020;

Korobkin et al. 2021; Zhu et al. 2021), modeling of the
electromagnetic radiation of the sGRB and of the kilonova
constitutes yet another complimentary constraint on the EOS
(e.g., Nedora et al. 2021).
The nuclear EOS is a crucial ingredient in numerical

simulations of compact binary mergers and core-collapse
supernovae. Since the precise physics is unknown, modelers
parameterize over their ignorance and provide tabulated EOSs,
which are used as an input parameter (Fiorella Burgio &
Fantina 2018).
In this work, we focus on CCSNe, where the EOS can have a

significant impact on both the dynamics and the outcome.
When a massive star runs out of nuclear fuel, it collapses under
its own weight. The inner part of the iron core of the star
becomes ultradense and neutron-rich, forming a proto-neutron
star (PNS). Infalling material then bounces off of the PNS,
forming an outward moving shock. If this shock is strong
enough, it moves outward, driving an explosion. If the shock
fails, the star collapses without an explosion. The core of the
star eventually forms either a stable NS, supported by neutron
degeneracy pressure and the strong nuclear force, or collapses
to a black hole (BH; Shapiro & Teukolsky 2008).
Solving the full CCSN problem remains a grand challenge in

astrophysics, with many decades devoted to simulations at high
resolution in 3D (e.g., Müller 2020). Several studies have been
performed with a focus on the EOS dependence of the PNS
contraction and explosion properties (e.g., Richers et al. 2017;
Schneider et al. 2019; Yasin et al. 2020). Many other studies
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performed simulations of 1–3 different progenitors with 1–3
different EOSs. See Nakazato et al. (2021) and Ivanov &
Fernández (2021) for some recent examples. Similar small-
scale sensitivity studies have also been attempted for binary
merger simulations. However, the absence of a truly systematic
approach makes it difficult to correlate the explosion properties
with the underlying physics assumptions in the EOS.

In this letter, we take an entirely new approach, facilitated by
the availability of computationally relatively inexpensive and
effective CCSN models. We combine the CCSN simulations
with statistical techniques from data science and observational
data of NS and BH remnant masses and use a data-driven
framework to validate six nuclear EOS models.

Unfortunately, with rare exceptions (Van Dyk 2017), it is
impossible to connect a supernova explosion to its progenitor
star. Rather, what is available is a set of observations of living
stars (not yet collapsing), a separate set of observations of
explosions, and another set of observations of postexplosion
remnant objects (BHs or NSs). This enables us to estimate the
probability distributions of these populations, but without any
means to draw a direct connection between a specific
progenitor, a specific supernova, and a specific remnant.

We sidestep this issue by comparing distributions directly.
We use a suite of CCSN models to map a physically motivated
statistical distribution of stellar progenitors into a synthetic
distribution of remnants, which can then be compared to
observed remnant distributions. We create six synthetic
distributions, one for each EOS, and use this comparison to
validate the EOS models.

2. Methodology and Input Physics

An overview of our general methodology is shown in
Figure 1. We begin with a set of model assumptions embedded
in different EOSs that lead to different simulations of stellar
collapse. These are used to generate a statistical distribution of
postcollapse remnant objects. The simulated distribution is then
compared to an observed distribution of remnants. A
quantification of the distance between real and simulated
distributions points to a favored model assumption.

The distribution of stellar progenitors depends on the zero
age main-sequence mass MZAMS and metalicity z, which we
combine into the single input variable x. Our simulations vary
over x and EOS s. A given simulation predicts as an output
either an NS or BH of a given mass. We call this simulated
mapping from x to a remnant mass η(x; s), ζ(x), which is
assumed to mimic the true mapping found in nature. The
observed data is also subject to measurement error, e; this error
emerges from limitations of the observed system or the
observing instrument.

2.1. Distribution of Mass and Metallicity

For precollapse stars, we use the initial mass function from
Kroupa et al. (1993):
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for a ZAMS mass MZAMS in solar masses (Me) and metallicity
z in units of solar metallicity. Note that the distribution is
uniform in metallicity and that it may need a global
renormalization factor.

2.2. Simulations

While computational power and model sophistication are
rapidly improving, 3D CCSN simulations are still heroic,
computationally expensive endeavors, making a large-scale
parameter study intractable. Here, we make use of a more
tractable setup, where the explosion is driven in spherical
symmetry by a self-consistent parameterized treatment (Perego
et al. 2015). Our framework (“PUSH”) mimics the net-
enhanced energy deposition expected from multidimensional
fluid motion in a spherically symmetric simulation. Due to the
physical coupling of core and outer layers, and the computa-
tional efficiency of PUSH, observable quantities such as
remnant masses, nucleosynthetic yields, and electromagnetic
signals can be generated self-consistently for a wide variety of

Figure 1. An overview of our methodology. Different equations of state lead to differences in simulated outcomes of core collapse.
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models (Ebinger et al. 2020; Curtis et al. 2021) in a fraction of
the time of full 3D first-principle models.

We have performed 681 simulations with initial masses of
MZAMS= 10.8–40Me at three initial metallicities6 (z= 0,
10−4, 1 Ze; Woosley et al. 2002; Woosley & Heger 2007)
and six different nuclear EOS models (“states”). The outcome
(“output”) is either an NS (in 508 cases) or a BH (in 173 cases).
The sample size per EOS is ∼100 (∼180 for DD2).

The EOS models SFHo and SFHx are taken from Steiner
et al. (2013), HS(DD2), HS(TM1), and HS(NL3) from Hempel
& Schaffner-Bielich (2010) and Hempel et al. (2012), and
BHBλf from Banik et al. (2014). All EOS models have
Mmax> 2 Me for a cold NS and are based on the relativistic
mean-field model with four different parametrizations (DD2,
SFH, NL3, TM1). The BHBλf EOS additionally includes
hyperons at high densities, which softens the EOS.

2.3. Distributions of Observed Remnant Mass

Distributions of the populations of isolated NSs, binary NS
systems, and BHs are all available from observations. Since it
is not currently possible to combine these into a joint
distribution, we examine simulated BH and simulated NS
populations separately, and compare them to observed popula-
tions on a population-by-population basis. Furthermore, we
compare the simulated NS population to each observed NS
population separately, since the simulator cannot distinguish
between isolated and binary remnants.

For the observed BH mass distribution, we use model C
from Abbott et al. (2019), which was first proposed in Talbot &
Thrane (2018). Model C predicts a smooth transition from no
BHs below some mass MBH

- to a truncated power law that
vanishes at MBH

+ , and a Gaussian distribution of high-mass BHs
formed from pair-instability supernovae. Since our models do
not capture the pair instability, we drop the second Gaussian
peak of the distribution, resulting in a smooth, truncated power
law:

p M CM M M S M , , 2mBH BH BH BH BH( ) ( ) ( ) ( )d= Q -a- + -

where the BH mass MBH is in solar masses. Here C is a
normalization constant, Θ is the Heaviside step function, and S
is a smoothing function that goes from zero at MBH to unity at
MBH+ δm.

7 We set the other parameters to those found in
Abbott et al. (2019): α= 7.1, M 6.8BH =- , M 75BH =+ , δm= 3.

For the observed NS masses, we consider four observed
populations of neutron stars: slow pulsars (NSS), recycled
pulsars (NSR), double-degenerate neutron stars in circular
orbits (NSC), and double-degenerate neutron stars in eccentric
obits (NSE). Here, single-degenerate refers to an NS in a binary
with a nondegenerate companion; double-degenerate refers to
an NS in a binary with another NS. All four are sampled from a
Gaussian (Özel & Freire 2016)

p M e
1

2
, 3M M

NS
2

2NS 0
2 2( ) ( )( ) ( )

ps
= s- -

for NS mass MNS. The parameters are: M0= 1.49 and σ= 0.19
for NSS, M0= 1.54 and σ= 0.23 for NSR, M0= 1.33 and

σ= 0.09 for NSC, and M0= 1.29 and σ= 0.24 for NSE. All
units are in solar masses.

2.4. Distributions of Measurement Error

The observed mass distributions are subject to observational
error coming from, e.g., telescope properties and the difficulty
of observing a given system. We convert an ensemble of
measurements to a distribution by assuming, via the central
limit theorem (Fischer 2010), that in the ensemble, the error e
can be drawn from a Gaussian distribution with mean zero and
standard deviation σ that depends on the population:

p e e;
1

2
. 4e

2

22 2( ) ( )s
ps

= s-

The BH measurement error comes primarily from the noise
properties of gravitational wave detectors, which depends on
the frequency of the gravitational wave, and thus the masses of
the merging BHs (Buikema et al. 2020). Lower mass black
holes produce higher-frequency gravitational waves, which
spend a longer time in the LIGO band and thus the detector is
able to build up a better signal-to-noise ratio, resulting in a
lower error. From reported 90% confidence intervals (Abbott
et al. 2019), we infer the standard deviation of the measurement
error to be

M M0.120213 0.355936. 5BH BH BH( ) ( )s = +

For NSs, observations vary significantly in their sensitivity
depending on the observing telescope and observed system.
We therefore assume the standard deviation for the neutron star
mass observational error (in solar masses) to be

0.12, 6NSS ( )s =

0.088, 7NSR ( )s =

0.003, 8NSC ( )s =

0.28. 9NSE ( )s =

We arrive at this value by taking the average width of 90%
confidence intervals of observations for the appropriate
populations.

3. Statistical Techniques

Although our CCSN models contain many uncertainties, for
the purposes of this study, we assume that our simulations
would mimic physical reality closely if s is tuned to an
unknown ideal EOS s0:

x x s x; , . 100( ) ( ) ( )z h» "

In other words, we assume that the discrepancy between the
best tuned simulator η( · ; s0) and the reality ζ( · ) is negligible.
The setup assuming discrepancy between η( · ; s0) and ζ( · )
suffers from an identifiability issue (e.g., Brynjarsdóttir &
O’Hagan 2014; Wong et al. 2017), and may require additional
information to find s0. In the following, we discuss the
predicted and observed remnant mass distributions for BHs,
MBH, and M s

BH( ) , respectively. The same procedure also
applies to NSs, MNS, and M s

NS( ) , respectively.
Our overarching goal is to find the state s0, which is only

possible if we have observations from nature. However, in
practice, we can only observe a contaminated version MBH˜ (or
MNS˜ ) ofMBH (orMNS). The relationship between MBH˜ andMBH

6 A larger initial mass range is desirable, but the relevant progenitor models
are currently unavailable to us. As a consequence, we may miss some of the
lowest mass neutron stars in our analysis.
7 The formal definition can be found in Talbot & Thrane (2018), but if
smoothness is not important, a simple line with slope δm suffices.

3

The Astrophysical Journal Letters, 932:L3 (7pp), 2022 June 10 Meskhi et al.



is modeled by

M M e x e, 11BH BH˜ ( ) ( )z= + = +

where e is the measurement error satisfying E(e|x)= 0 and x
encapsulates both MZAMS and z.

In a typical setup of computer model calibration, one
would collect data in terms of input-output pairs, i.e.,

x M,i i i
n

BH 1{(( ) ( ˜ ) )}= from nature to calibrate the simulator, i.e.,
to estimate s0, by

n
M x sarg min

1
; , 12

s i

n

i i
1

BH
2{( ˜ ) (( ) )} ( )å h-

=

assuming the simulator evaluations are affordable. However,
here, we do not have the luxury to observe the input-output pair
x M, BH( ˜ ) from nature. Instead, we are only able to obtain the
marginal distribution p(x) of x (Section 2.1) and the marginal
distribution p MBH( ˜ ) of MBH˜ (Section 2.3). Therefore, we have
to build a calibration strategy that is intuitively based on
p MBH( ˜ ) and p(x), instead of the joint distribution p x M, BH( ˜ ) or
the conditional distribution p M xBH( ˜ ∣ ).

3.1. Comparing the Marginal Distributions

Aside from real star-collapse data, we are additionally
provided with data sets x M,i

s
i
s

i
n

BH 1
s{(( ) ( ) )} = from the simulator

for every state s:

M x s i n; , 1, , , 13i
s

i
s

sBH( ) (( ) ) ( )h= = ¼

where the sampling designs x i
s{( ) } are generated independently

according to the sampling density qs(x).
We use qs to represent the densities related to data generated

from the simulator at state s: e.g., qs(MBH, x), qs(x), and
qs(MBH|x). Note that

p M p x M x, d 14BH BH( ˜ ) ( ˜ ) ( )ò=

p M x p x xd 15BH( ˜ ∣ ) ( ) ( )ò=
p M x w x q x xd , 16s sBH( ˜ ∣ ) ( ) ( ) ( )ò=

where ws(x) := p(x)/qs(x) is assumed to be strictly positive and
known.

We define the contaminated version of M s
BH( ) as

M M e:s s s
BH BH( ˜ ) ( ) ( )= + where (e)s|(x)s∼ p(e|x). Again, we

use qs to represent related densities: e.g., q M x,s BH( ˜ ) and
q M xs BH( ˜ ∣ ). We have

p M q M x w x x: , d 17s s sBH BH( ˜ ) ( ˜ ) ( ) ( )ò=
q M x q x w x xd . 18s s sBH( ∣ ) ( ) ( ) ( )ò=
~

Since q M x p M xs BH BH0
( ˜ ∣ ) ( ˜ ∣ )= , p M p Ms BH BH0

( ˜ ) ( ˜ )= by

Equations (16) and (18). We then estimate p MBH( ˜ ) through a
weighted kernel density estimation (KDE) of p Ms BH0

( ˜ ). The
weighted KDE is based on the fast Fourier transform algorithm
implemented in KDEpy (Odland 2018). The pseudocode of the
estimation of ps can be found in Appendix B.

Assuming q qs s0
¹ for any s≠ s0, we can compare p MBH( ˜ )

with the weighed KDE at different s, and choose s0 as the
“closest” one. We use the following two information-theoretic
statistical distances to quantify the dissimilarity between p( · )

and the estimated ps( · ). The first is the Kullback–Leibler (KL)
divergence

D p p p M
p M

p M
Mlog d , 19s

s
KL BH

BH

BH
BH⎜ ⎟

⎛
⎝

⎞
⎠

( ∣∣ ) ( ˜ ) ( ˜ )
( ˜ )

˜ ( )ò=

which measures the relative entropy between p MBH( ˜ ) and
p Ms BH( ˜ ). The second is the total variation distance DTV

D p p p M p M M,
1

2
d , 20s sTV BH BH BH( ) ∣ ( ˜ ) ( ˜ )∣ ˜ ( )ò= -

which measures the maximum difference between the prob-
abilities assigned to an event by two probability distributions.
We also report on the corresponding 95% confidence

intervals via bootstrap quantiles (Efron & Tibshirani 1994).
The pseudocode of the bootstrap procedure is given in
Appendix C.

4. Results

The simulated and observed distributions of remnant masses
(BHs and NSs separately) are shown in Figure 2. We find the
simulated neutron star population best agrees with the observed

Figure 2. Probability density functions of BHs (top) and NS (bottom) for
simulated (color) and observed (black; dashed for isolated and dotted for
double NS) distributions.
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NSS population. We believe this is reasonable for the following
reasons: The PUSH models use isolated stars as initial
conditions, and double-degenerate binaries likely deviate more
from single-star evolution than single-degenerates do. Also,
recycled pulsars have accreted enough mass and angular
momentum to spin up, meaning their mass reflects more than
supernova dynamics. We therefore do not compare distances
for the NSR, NSC, or NSE populations.

The distances from each simulated population to the
observed one for each distance metric are summarized in
Table 1. We note that for BHs, the DTV distances are similar in
magnitude to those for NSSs, whereas the DKL distances for
BHs are smaller than those for NSSs. Within each population,
the DKL and the DTV give the same ranking; however the
rankings are slightly different between NSs and BHs.

To interpret the results further, we compute for each
population, for each distance measure (DKL, DTV), and for
each EOS, the difference from the average distance, ΔKL and
ΔTV, as shown in Figure 3. The error bars represent 95%
confidence intervals. Points below the dashed line are more

favored than points above. The BHs and the NSs agree
qualitatively except for DD2, which is more favored by BHs
and less favored by NSs. SHFo and SFHx are both mildly
disfavored by all metrics, while BHBλf, TM1, and NL3
appear to be mildly more favored.
We remark that the KL divergence sometimes suffers from

stability issues due to small density values, such as the tails of
our distributions.

5. Conclusions

Future work will explore how machine learning can play the
role of a simulator surrogate that provides additional data to
improve our statistical confidence during the assessment of
theoretical equations (Kamdar et al. 2015; Behler 2016). The
learning model can then be combined with active learning
(Settles 2012) to choose examples (feature vectors) in the input
space that maximize model performance. The goal is to avoid
the computational cost attached to many simulations. Addi-
tionally, physical constraints can be incorporated into the
learning model to further narrow the parameter space.
On the astrophysics side, our PUSH models assume stellar

progenitors for isolated stars, when in fact most stars are born
in binaries, and the observed BH and NS populations reflect
this reality. A straightforward generalization would be to
include progenitors from binaries—at least at the state of the art
of stellar evolution (Menon & Heger 2017). Indeed, the choice
of weights for stellar progenitors is relatively simple. A more
sophisticated approach uses binary population synthesis
forward modeling (Izzard & Halabi 2018) to predict the
probability density function for binary systems. Additionally,
further work is required to understand the influence of the
calibration procedure on our results. The PUSH method was
calibrated using the DD2 EOS (Perego et al. 2015). However,

Table 1
Summary of Distances for All Three Populations and All Six EOS Models

EOS BH NSS
DKL DTV DKL DTV

DD2 0.528 0.068
0.101

-
+ 0.324 0.036

0.050
-
+ 0.066 0.043

0.058
-
+ 0.125 0.052

0.045
-
+

SFHo 1.011 0.270
0.836

-
+ 0.523 0.092

0.155
-
+ 0.071 0.054

0.081
-
+ 0.133 0.069

0.060
-
+

SFHx 0.999 0.312
1.510

-
+ 0.519 0.109

0.187
-
+ 0.082 0.063

0.098
-
+ 0.143 0.075

0.066
-
+

BHBλf 0.729 0.135
0.270

-
+ 0.427 0.060

0.089
-
+ 0.044 0.033

0.066
-
+ 0.105 0.064

0.061
-
+

TM1 0.752 0.152
0.295

-
+ 0.437 0.065

0.093
-
+ 0.018 0.016

0.056
-
+ 0.068 0.050

0.068
-
+

NL3 0.808 0.178
0.459

-
+ 0.457 0.073

0.121
-
+ 0.025 0.023

0.060
-
+ 0.080 0.062

0.066
-
+

Figure 3. The distance from the mean for each EOS and each population for DKL (top) and DTV (bottom) for BHs (left) and isolated NSs (right). Error bars show 95%
confidence intervals.

5

The Astrophysical Journal Letters, 932:L3 (7pp), 2022 June 10 Meskhi et al.



as discussed in Ebinger et al. (2019), the PUSH parameters are
partially constrained by observations, independent of EOS,
giving some confidence that the EOS used for calibration is
subdominant in the procedure. We remark that the NS masses
obtained with PUSH are very similar to the NS masses
obtained from 3D simulations in Burrows et al. (2020), giving
confidence that the results of this work qualitatively extend to
other supernova models. This work also used the observed
distributions of remnant mass only; this neglects important
information about the EOS from the NS radius. However,
additional distributions, such as explosion energy and nickel
mass, are available in both observations and simulations,
providing an exciting direction of multivariate distributions
with additional independent variables. Finally, a more
sophisticated construction of the measured populations and
associated measurement errors would be a natural extension of
our work.
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Appendix A
The Nuclear Equations of State

The following table (Table 2) summarizes the key properties
of the nuclear equations of state used in this work.

Table 2
Nuclear matter and neutron star properties of the EoSs used here

“State” EOS K mn
*/mn mp

*mp Mmax R M1.4  Refs.
(MeV) (Me) (km)

1 DD2 242.7 0.5628 0.5622 2.42 13.2 1,2
2 SFHo 245.4 0.7609 0.7606 2.06 11.9 3
3 SFHx 238.8 0.7179 0.7174 2.13 12.0 3
4 BHBλf 242.7 0.5628 0.5622 2.10 13.2 4
5 TM1 281.6 0.6343 0.6338 2.21 14.5 1,2
6 NL3 271.5 0.5954 0.5949 2.79 14.8 1,2

Note.
Listed are the incompressibility K, the effective neutron and proton masses mn

* and mp
*, the maximum mass of a cold neutron star, and the radius of a 1.4 Me neutron

star.
References—(1) Hempel & Schaffner-Bielich (2010) (2) Hempel et al. (2012) (3) Steiner et al. (2013) (4) Banik et al. (2014).
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Appendix B
Estimation of ps

The density ps is estimated with a weighted kernel density
estimation procedure. Due to noise variable (e)s, an additional
Monte Carlo procedure is adopted, with the number of Monte
Carlo samples Ne= 10,000. Below is the corresponding
pseudocode.

Algorithm 1. Estimation of ps

Input: s: equation of state; Ne: number of Monte Carlo samples
Output: Estimate of ps
for: i n1, , s= ¼ do

Generate measurement errors e e, ,i
s

iN
s

1 e( ) ( )¼ independently according to
the density p e x ;i

s( ∣ )
Construct

w w x M M e j Nand , 1, , .ij
s

s i
s

ij
s

i
s

ij
s

eBH BH( ) (( ) ) ( ˜ ) ( ) ( )= = + = ¼

end
Perform the weighted kernel density estimation on the data

M i n j N: 1, , ; 1, ,ij
s

s eBH{( ˜ ) }= ¼ = ¼ with weights w .ij
s{( ) }

Appendix C
Bootstrap Confidence Interval

In order to obtain the confidence intervals of our metrics, we
resort to a bootstrap procedure with the number of bootstrap
samples K= 10,000. The corresponding details are given in the
following pseudocode.

Algorithm 2. Bootstrap Confidence Interval

Input: s: equation of state; K: number of bootstrap samples; Ne: number of
Monte Carlo samples; 1 100%( )a- : confidence level

Output: 1 100%( )a- bootstrap confidence intervals of the estimated KL
divergence and TV distance

for: j K1, ,= ¼ do
Generate a bootstrap data set by sampling ns observations from

x M,i
s

i
s

i
s

BH 1{( ) ( ) } = with replacement;
Apply Algorithm 1 with the bootstrap data set (instead of the original data
set x M,i

s
i
s

i
s

BH 1{( ) ( ) } = ) and compute the KL divergence and the total variation
distance, denoted by; DKL j

s( ) and DTV j
s( ) , respectively;

end
Compute the 2( )a -quantile and 1 2( )a- -quantile of DKL j

s
j
K

1{( ) } = to form a
1 100%( )a- confidence interval for the estimated KL divergence;

Compute the 2( )a -quantile and 1 2( )a- -quantile of DTV j
s

j
K

1{( ) } = to form a
1 100%( )a- confidence interval for the estimated TV distance.
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