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Abstract—The recent increase in volume and complexity of
available astronomical data has led to a wide use of supervised
machine learning techniques. Active learning strategies have been
proposed as an alternative to optimize the distribution of scarce
labeling resources. However, due to the specific conditions in
which labels can be acquired, fundamental assumptions, such as
sample representativeness and labeling cost stability cannot be
fulfilled. The Recommendation System for Spectroscopic follow-
up (RESSPECT) project aims to enable the construction of
optimized training samples for the Rubin Observatory Legacy
Survey of Space and Time (LSST), taking into account a realistic
description of the astronomical data environment. In this work,
we test the robustness of active learning techniques in a realistic
simulated astronomical data scenario. Our experiment takes into
account the evolution of training and pool samples, different costs

per object, and two different sources of budget. Results show
that traditional active learning strategies significantly outperform
random sampling. Nevertheless, more complex batch strategies
are not able to significantly overcome simple uncertainty sam-
pling techniques. Our findings illustrate three important points:
1) active learning strategies are a powerful tool to optimize the
label-acquisition task in astronomy, 2) for upcoming large surveys
like LSST, such techniques allow us to tailor the construction
of the training sample for the first day of the survey, and
3) the peculiar data environment related to the detection of
astronomical transients is a fertile ground that calls for the
development of tailored machine learning algorithms.

Index Terms—Active Learning, Machine Learning, Astrostatis-
tics

I. INTRODUCTION

Active learning techniques have been proven effective in

a variety of situations where labeling is expensive or time978-1-7281-2547-3/20/$31.00 ©2020 IEEE



consuming [1]. Nevertheless, there remains a range of real data

scenarios where basic assumptions behind these techniques,

such as sample representativeness and stability, are not fulfilled

– yet, the task of optimizing the allocation of limited labeling

resources continues to be of paramount importance. In this

work, we explore one specific scenario: the classification of

extragalactic astronomical transients.

In the last couple of decades, technological developments

have led to a dramatic increase in the volume and complexity

of astronomical data. This scenario will soon escalate with

the arrival of the Rubin Observatory Legacy Survey of Space

and Time1 (LSST). LSST will produce measurements of flux

(brightness) within broad regions of the electromagnetic spec-

trum (filters). These photometric observations can be obtained

roughly in a few minutes for all sources within the telescope

field of view, in effect providing a snapshot of that region of

the sky at that moment in time. The survey is expected to

cover the entire southern sky every few days for a total period

of ten years. Nevertheless, to obtain reliable classifications,

it is necessary to scrutinize each object with high resolution

spectroscopic observations. These allow the astronomer to

identify the presence of individual chemical elements, which

facilitates assigning it to the correct group within the astro-

nomical zoo. This labeling process requires more telescope

time (on the order of hours), a different type of instrument, and

sometimes significant effort from an experienced observational

astronomer who can reduce the data and translate it into a

label. Although the availability of spectroscopic resources is

also expected to increase during the next decade, it will always

be orders of magnitude lower than its photometric counter part.

In preparation for such data deluge, the astronomical com-

munity has been investigating the application of supervised

learning techniques as a strategy to provide automatic labels

for thousands of objects which may never be targeted with

spectroscopy [2]. Whenever based on real data, such efforts

use the available spectroscopically confirmed objects for train-

ing/validation and the final learning model is used to provide

labels to the larger purely photometric sample. Despite the

popularity of this approach, the intrinsically different nature of

these two methods of observation results in two very different

data distributions. Spectroscopy demands higher signal to

noise ratio and can only target brighter (and in many cases

closer) sources. Since objects farther away exist in earlier

epochs of the evolution of the universe, spectroscopic samples

are restricted to certain populations of astronomical sources.

In supervised machine learning applications, this mismatch

translates into highly biased results [3]. Moreover, the use

of traditional supervised learning techniques assumes the

availability of an initial training (spectroscopically confirmed)

sample. This can be built from old legacy data or constructed

during the first years of the survey following astronomically

driven target selection strategies. In both cases, the resulting

training sample will hold the biases aforementioned and con-

sequently it will not be ideal for supervised machine learning

1https://www.lsst.org/

[4].

Although impossible to be completely eliminated, the dis-

crepancy between spectroscopic (training) and photometric

(target) samples can be mitigated with the help of active

learning strategies [4]–[6]. Additionally, we would like to

tailor the distribution of labeling resources, and consequently

the construction of the training sample, from the start of

the survey. Thus ensuring that each new spectrum will add

valuable information to the learning model, and not be spent

on overcoming biases introduced by the initial training set.

The case for classification of astronomical transients

(sources which are visible for a limited time) is even more

complex. The variability of sources translates into evolving

samples and labeling costs, forming a situation which is rarely

addressed in the active learning literature. In preparation for

the arrival of LSST data, the LSST Dark Energy Science Col-

laboration2 (DESC) and the Cosmostatistics Initiative3 (COIN)

joined efforts in the construction of a Recommendation System

for Spectroscopic follow-up (RESSPECT) – whose goal is

to guide the construction of optimized training samples for

machine learning applications. This is the first public report

from the RESSPECT team.

In what follows, we focus on the problem of supernova

classification and present a stress test for active learning

strategies under rather realistic observational conditions. In

Section II, we describe the astronomical case in question and

the data set used in our experiments. Details on how we deal

with varying labeling costs and multiple sources of budgets

are given in Section III. Finally, results are shown in Section

IV and discussed in Section V. The code and data used in this

work are publicly available in the COINtoolbox4.

II. SUPERNOVA PHOTOMETRIC CLASSIFICATION

In this study we focus on the classification of astronomical

transients. We consider transients as stationary sources where

brightness evolves with time. More specifically we are inter-

ested in supernovae, which correspond to the final stage of

development of different types of stars. These are cataclysmic

events, which are detected as new sources in the sky who

become very bright and remain visible for a short period

(weeks to months).

Supernovae are the origin of heavy elements in the Universe,

thus playing a central role in the late cosmic evolution. Beyond

their astrophysical importance, Supernovae Ia (SNe Ia) enabled

the discovery of the current accelerated cosmic expansion [7],

[8] and remain crucial for cosmological studies. They can be

recognized through unique spectral features, like the absence

of hydrogen and the presence of intermediate mass elements

[9]. They occur with roughly the same energy throughout the

history of the Universe and thus can be used as standard

candles for measuring distances at cosmological scales.

Since their application to cosmology became evident, SNe

Ia have been among the main science drivers for many of

2https://lsstdesc.org/
3https://cosmostatistics-initiative.org/
4https://github.com/COINtoolbox/RESSPECT/tree/master
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Fig. 1. Light curve for a simulated type Ia supernova observed in 4 DES6

filters ([g, r, i, z]). The plot shows simulated flux values (points and error
bars) as well as best-fit results (solid lines) across time.

the new generation of large scale astronomical surveys –

among them the LSST. These surveys will gather photometric

measurements of the brightness evolution (light curves) of

thousands of supernovae candidates in a series of broad-band

filters (see an example of simulated SN Ia light curve in Figure

1). However, since spectroscopic confirmation (labels) will

only be possible for a small subset of such candidates, the

potential to gain new cosmological insights from SNe Ia will

rely on our ability to develop accurate automatic classifiers.

A. Caveats

The task of classifying astronomical transients poses extra

challenges beyond those faced by gathering different types

of observations. We describe below some relevant issues that

were considered in our experiments. Although this is not

an exhaustive list, it is, to our knowledge, a more realistic

description than any other found in the literature to date.

1) Labeling window of opportunity: Once a new source

is identified as a supernova candidate, we expect its bright-

ness to evolve and, eventually, fade away. Any spectroscopic

analysis should ideally be performed when the transient is

near its maximum brightness; this commonly leads to a more

reliable, and less time consuming, spectroscopic confirmation.

Moreover, distant or intrinsically faint targets may only be

bright enough to allow spectroscopic measurements close to

maximum brightness, which imposes a small time window

during which labeling is possible (typically a few days).

Additionally, the decision of labeling one particular target

needs to be made with partial information - when one has

seen only a few points in the light curve.

2) Evolving samples: In adapting the supernova classifi-

cation problem to a traditional machine learning task, we

build the initial training and validation/test samples using full-

light curves. Our goal is to use active learning to construct

a model that performs well when classifying the full light

curve test sample. However, the pool sample unavoidably

contains partial light curves (Section II-A1). Considering, for

the moment, a simplified case of fixed batches containing

only 1 object: at each iteration an object is queried and sent

for spectroscopic observation. Assuming the labeling process

was successful, the chosen object is likely to be close to its

maximum brightness phase. As a consequence, its light curve

has only been partially observed. This partial light curve and

its corresponding label are transferred from the pool to the

training sample, which is now formed by a number of full light

curve objects and one additional partial light curve. Since we

expect the following day to bring some additional photometric

measurements (points in the light curve) for a subset of the

objects in the initial pool sample, the result is a continuous

update and evolution of the training and pool samples during

the entire duration of the survey.

3) Sources of budget: In our case study, the labeling process

is extremely expensive and requires coordination between

different telescopes. The power of astronomical telescopes

is proportional to the area of their primary mirror. A larger

primary mirror means the telescope is able to target fainter, and

consequently more distant, sources. We consider the scenario

where two spectroscopic telescopes are used for labeling

purposes: one telescope with a primary mirror of 4m in

diameter and another with 8m. At each night, we considered

6 hours of available observation time per telescope5 (budget).

Since spectroscopic observations of the same object require a

different amount of observation time for each of the telescopes,

each telescope is considered a distinct budget source.

4) Evolving costs per object and budget source: For each

queried object, the time necessary to take a spectrum (which in

turn can be used for labeling) depends on the characteristics of

the available spectroscopic telescope and the brightness of the

target object, among other factors. As an illustration, an object

with a brightness that requires t minutes of spectroscopic

analysis using a 4m telescope is also a viable target for the

8m – in which case it would require only a fraction of t
to complete the observation. On the other hand, a fainter

object which can be observed by the 8m telescope given a

large enough observation time, might not be a viable target

for the 4m. Moreover, as the brightness (measured flux) of

each supernova evolves with time, this cost will also depend

on the time the query is made. In our case, we update the

cost of each queried object for the two different sources of

budget (telescopes) at each active learning iteration (night).

The maximum allowed observation time for any given object

is set to 2 hours. Our exposure time calculator is heavily based

on [10], developed for the High Cadence Transient Survey

(HiTS).

5This is an optimistic estimation of the nightly budget.



B. Data

We used simulated data from the SuperNova Photometric

Classification Challenge (SNPCC) [11]. This data set was

constructed to mimic observations taken by the Dark Energy

Survey6 (DES) during a period of 180 days. Distances were

calculated assuming a standard cosmological model (Ωm =
0.3, OmegaΛ=0.7, w = −1). Observation conditions at the

telescope sight were derived from historical measurements of

the ESSENCE project at the Cerro Tololo Inter-American Ob-

servatory7 (CTIO) and incorporated to astrophysical templates.

All these elements were incorporated using the SNANA8

software [12], where all necessary configuration files for

reproduction can be found. This data set contains three big

classes of supernovae: types Ia, Ibc and II. The complete set

contains 21,319 light curves in four broad-band DES filters,

[g, r, i, z], of which 1,103 represent a population that was

spectroscopicaly confirmed9. See figure 1 for an example of a

typical supernova Ia light curve in 4 different filters.

C. Experiment design

We separated our data set into 3 groups: the full train-

ing sample, identified as spectroscopically confirmed by the

SNPCC data set and formed by 1,103 objects (hereafter,

original training); the validation and test samples formed by

1,000 objects each, taken from the 20,216 light curves tagged

as purely photometric by the SNPCC data set and following its

sub-population distribution; and the pool sample comprising

the remaining 18,216 objects.

Since our pre-processing step (Section II-D) requires a

minimum of 5 observed points in each filter to deliver mean-

ingful best-fit parameters, a complete input data matrix is only

available starting from the 20th day of the survey. This leaves

only 160 active learning cycles (days) that we can use to build

an optimal training sample. In order to probe the impact of

the biases present in current spectroscopic samples, we also

considered the situation where the initial training set is formed

by only 10 objects (5 SNe Ia and 5 non-Ia) randomly chosen

from the original training. This experimental configuration is

also a more direct test of our active learning algorithms given

that we have limited data and can only simulate the process

for a small number of days.

To establish a baseline for comparison of our results, we also

created a randomly sampled training set which follows closely

the distribution of the validation/test sample. Results obtained

when using this sample to train our learning model correspond

to the best possible scenario we can achieve given our data set,

labeling budget and classifier combination. The entire SNPCC

data was rearranged to build this set of randomly selected

training, test and validation samples (each containing 1,000

objects). The remaining objects were then allocated to a pool

6 https://www.darkenergysurvey.org/
7http://www.ctio.noao.edu/noao/
8https://snana.uchicago.edu/
9Visual description of the observational characteristics of this data set and

its sub-samples are given at [4], Figures 1, 2 and 3.

sample. This configuration was used to provide an upper bound

to the performance.

D. Pre-processing

Following the feature extraction procedure described in [4],

all light curves with at least 5 flux observations in each filter,

were fit to the parametric function suggested by [13].

f(t) = A
e−(t−t0)/τf

1 + e(t−t0)/τr
+B, (1)

The fit was performed independently for each filter. Objects

with less than 5 observed points per filter or for which the

parametric fit did not converge were not included in the

analysis. Figure 1 shows the result of the parametric fit (full

lines) along side the measured flux (points) for a well sampled

SN Ia. Best fit parameter values for pX = {A, B, t0, τf , τr}
were concatenated according to the effective wavelength of its

corresponding filter, X = [g, r, i, z], to form one line of the

input matrix per object.

Since the initial training, validation and test samples contain

full light curves, their distribution does not change. Figure 2

shows the distribution of best-fit parameters in r-band for 3

of the features considering the original training, validation and

test samples.

For the initial pool sample the number of points observed

in each light curve changes with time, thus for each day

we performed the feature extraction procedure considering

all light curve points observed until then. To calculate the

cost of labeling, we need to estimate the brightness of the

object in each day of the survey. If the last observed light

curve point was measured within the last 2 days, we used

that measurement as a good estimate of its current brightness.

Otherwise, we use the result of the parametric fit to estimate

its brightness today and use this estimate to calculate the cost

of labeling with both telescopes (4m and 8m), as described

in Section II-A4. Objects bright enough to be queried by at

least one of the two available telescopes form the pool sample

for that day. For the 3 example features, Figure 3 shows how

the distribution of the complete pool sample (orange) changes

with the evolution of the survey in comparison with the static

validation/test samples (gray) in r-band.

III. METHODOLOGY

Once the training, pool, validation and test samples were

properly set up (Sections II-C and II-D), we recorded the

performance of different active learning strategies using Ran-

dom Forests [14]. For the purpose of this paper, we will only

consider a binary classification problem (SN Ia/non-Ia). For

all the experiments described in Section II-C, we applied a

naive Random Sampling (RS) strategy, where objects were

randomly chosen from the pool without any selection criteria.

This will serve as a lower bound for comparison with active

learning techniques.
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A. Active Learning Strategies

The label constrained environment described above is a

prime candidate to benefit from active learning. Moreover, it

imposes significant challenges that have been under-addressed

in the literature, especially from an empirical stance (Sec-

tion II-A). First, the population that can be spectroscopically

observed will always differ from the target population. This

requires active learning to perform well when the pool set is

not representative of the validation and test sets. Second, we

must choose to label a light curve before fully observing it

– since the object must be observed near maximum bright-

ness. Finally we must also include non-constant costs in the

selection of our batch sizes. Most active learning strategies

assume constant costs and thus restrict the queried batch to

a fixed size per iteration – these are known as cardinality

constraints. In our case, each object has a different cost (time

necessary to get a label) and our total budget is constrained by

the number of hours of spectroscopic telescope time available

per night. These are known as knapsack constraints and have

been studied in the context of discrete optimization [15], [16].

These challenges make our work an excellent case study to

stress test how standard and commonly used active learning

algorithms hold up to real world conditions and using modern

machine learning classifiers.

We formulate our problem in terms of pool-based active

learning, coupled with uncertainty sampling driven techniques

[1]. Specifically we used query by committee by performing

bagging over a random forest classifier [17]–[19]. Query by

committee is a known active learning strategy that invokes a

set of classifiers (committee) for each object’s label estimation.

In this context, the queried object will be the one that exhibits

strong disagreement between the members of the committee.



In bagging, the training data is sub-sampled with replacement

and each subset is used to train a different model (using

Random Forests) – each of these models is then considered

a member of the committee. The criteria used to quantify the

disagreement between the output of committee members is

called a query selection strategy. In all experiments presented

here we considered a committee of size 10, each composed of

100 trees, and only varied the query selection strategy.

Let (x, y) denote feature and label pairs where in our

case x corresponds to the concatenated best fit parameters

(Equation (1)) for the 4 DES filters, measured from a single

object and y is a binary label identifying Ia/non-Ia SNe. Let

Pθ(y|x) denote the predictive probability output from a single

committee member, where θ encompasses the parameters of

the learning model. Since each member of the committee

generates a predictive probability over the estimated class, we

can define the average committee predictive probability as

PC(y|x) =
1

NC

∑

c

Pθc(y|x), (2)

where NC is the committee size and the sum runs over all

committee members. We use this distribution to build all other

selection strategies.

One of the most common selection strategies is the soft

vote entropy [1]. In information theory, entropy measures

the expected (average) amount of information uncovered by

identifying the outcome of a random trial [20]. In this context,

if a given object has a high probability of belonging to a given

class, it is unlikely that labeling it will add new information

to the model. On the other hand, if an object has equal

probability of belonging to all possible classes, labeling it will

uncover currently missing information and certainly improve

our model. Considering the prediction of each committee

member as a vote, this strategy will choose to query the

object with highest entropy among all committee members.

Mathematically, we have

x∗ = argmax
x

(

−
∑

y

PC(y|x) logPC(y|x)

)

, (3)

where x∗ is the queried object10.

We also use the average Kullback-Leibler (KL) divergence

between the individual committee members and the average

committee probability as a query selection strategy [1], [21],

x∗ = argmax
x

(

1

NC

∑

c

KL(Pθc(y|x)||PC(y|x))

)

. (4)

Thus, selecting the objects with the most disagreement among

the committee members. This selection strategy is equivalent

to the one defined by Bayesian Active Learning by Disagree-

ment (BALD) [22]. To our knowledge the equivalence between

these two strategies has not been addressed in the literature and

we provide a proof in Appendix A.

10For a binary classification problem, this is equivalent to the uncertainty
sampling strategy used in [4].

B. Batch Strategies

The query strategies described above target one individual

object per active learning cycle. When moving to batch queries

(targeting multiple objects per night), these strategies can

face serious challenges, such as querying redundant data

points [1]. The problem of querying diverse batches can

typically be framed as a discrete optimization problem and

is known to be computationally challenging. However, in

practical applications, selecting multiple queries at a time is

a requirement. Here we assume constant cost of acquisition

across all data points; this requirement will be relaxed in the

next subsection. An efficient approach if the query selection

strategy is monotonic submodular, is to use a greedy algorithm

which provides batches with a (1 − 1/e) approximation to

the optimal solution [15], [23]. Both of the query strategies

given above are monotonic submodular [24]. While in [24] this

technique was called BatchBALD, we refer to it as BatchKL

since our technique for approximating the disagreement region

is not Bayesian.

Let the sets x1, ..., xb and y1, ..., yb be denoted as x1:b and

y1:b, where b is the batch size. Using the definition of mutual

information, I, for two sets of random variables we have,

I(y1:b, θ|x1:b,Dtrain) = H(y1:b|x1:b,Dtrain)−

Ep(θ|Dtrain)H(y1:b|x1:b, θ,Dtrain),
(5)

where H refers to entropy, Dtrain the training data and E is

an expectation. The mutual information can be seen as the

intersection of the information content between two sets of

random variables [25]. This strategy accounts for overlaps in

the information content between different data points, x1:b,

and model parameters, θ. By accounting for these overlaps

we can avoid querying redundant data points. This function

is monotonic submodular and thus, when optimized with a

greedy algorithm, provides a (1 − 1/e) approximation to

the optimal solution [24]. We use equation (5) to define the

BatchKL strategy as:

x∗
1:b = argmax

x1:b

I(y1:b, θ|x1:b,Dtrain). (6)

Note that the first term on the right hand side of equation

(5), the joint entropy, is also monotonic submodular. We use

it to define the strategy we call BatchEntropy:

x∗
1:b = argmax

x1:b

H(y1:b|x1:b,Dtrain). (7)

In addition to these two batch strategies we will also test a

strategy that takes the top b points from equation (3). We will

refer to this strategy as Uncertainty Sampling Entropy (USE).

C. Non-Constant Cost

As mentioned previously, each object in our pool sample

has a different cost (telescope time required for labeling). In

addition, our budget (telescope time) is very limited and needs

to be used as efficiently as possible. We assume we have access



to 6 hours of observation in 4m-class telescopes and 6 hours

in 8m-class telescopes per night. The batch strategies defined

in the last section assumed cardinality constraints where all

objects had identical costs. We now consider the case where

each object has different cost and we have a fixed budget each

night (knapsack constraints [16]). We show results where we

fill up objects to each telescope, without considering their

individual cost, until the budget of each telescope is full.

We first assign objects to the 4m telescope until the budget

is exhausted, at which point objects are assigned to the 8m

telescope. We also tested strategies where we scale the query

metrics by the cost of each object and greedily select objects

after scaling11. However, we do not include these results as

they were nearly identical to the simpler approach.

IV. RESULTS

The performance of our results in the test sample are

reported following the metrics proposed by [11],

accuracy (acc) =
Nsc

Ntot

, (8)

efficiency (eff) =
Nsc,Ia

Ntot,Ia

, (9)

purity (pur) =
Nsc,Ia

Nsc,Ia +Nwc,nIa

, and (10)

figure of merit (FoM) =
Nsc,Ia

Ntot,Ia

×
Nsc,Ia

Nsc,Ia +WNwc,nIa

, (11)

where Nsc is the total number of successful classifications,

Ntot is the total number of objects in the test sample, Nsc,Ia is

the number of successfully classified SNe Ia (true positives),

Ntot,Ia is the total number of SNe Ia in the test sample, Nwc,nIa

is the number of non-Ia SNe wrongly classified as Ia (false

positives) and W = 3 is a factor that penalizes the occurrence

of false positives. In our study, a false positive can have a more

drastic consequence than a false negative. In case we wrongly

classify a SN Ia as non-Ia, we will lose the opportunity to use

this object in our photometric cosmology analysis. However,

if a non-Ia is mistakenly classified as a SN Ia, it will bias

our distance estimates and, consequently, cosmological results.

The figure of merit and the W parameter were set to ensure

that preference is given to results with high purity, without

compromising efficiency. We search for the learning strategy

that can maximize the figure of merit. For all the experiments

described below we consider non-constant costs described in

Section III-C.

As described in section II-C, we present three experiments.

Each one is run simulating 180 days of observation. Upon

each day, our active learning strategies select a set of objects

to label and add them to the training set – while staying within

the nightly budget. Experiments only differ on how the initial

training set was constructed.

For our first experiment we started from the idealized case

of a randomly sampled training, validation and test samples,

11For more detail on these approaches see [26], Chapter 5.

TABLE I
PERFORMANCE METRICS FOR THE DIFFERENT ACTIVE LEARNING

STRATEGIES WHEN THE ENTIRE SNPCC SPECTROSCOPIC (TRAINING,
1103 OBJECTS) SAMPLE IS GIVEN AT THE BEGINNING OF THE SURVEY.

THE TABLE SHOW RESULTS METRIC VALUES 180 DAYS AFTER THE START

OF THE SURVEY.

Metric Learning Strategy

RS BatchEntropy BatchKL USE

Accuracy 0.87 0.87 0.87 0.88
Efficiency 0.57 0.59 0.56 0.66

Purity 0.78 0.77 0.82 0.77
Figure of Merit 0.31 0.32 0.34 0.35

TABLE II
PERFORMANCE METRICS FOR THE DIFFERENT ACTIVE LEARNING

STRATEGIES BEGINING FROM A RANDOM INITIAL TRAINING SAMPLE OF

10 OBJECTS (5 SNE IA, 5 NON-IAS). THE TABLE SHOWS RESULTS 180
DAYS AFTER THE START OF THE SURVEY.

Metric Learning Strategy

RS BatchEntropy BatchKL USE

Accuracy 0.85 0.87 0.87 0.87
Efficiency 0.42 0.54 0.50 0.55

Purity 0.85 0.84 0.83 0.80
Figure of Merit 0.27 0.34 0.31 0.32

each containing 1,000 objects. The goal of this exercise was

to quantify a set of optimal results given our data, classifier

and labeling resources. We used a RS strategy for the entire

duration of the survey. After 160 iterations (180 days of

observation), we obtained {acc, eff, pur, FoM} = [0.88, 0.62,

0.82, 0.37].

We then considered the case where the original SNPCC

spectroscopic sample was completely available at the begin-

ning of the survey, thus starting with a training sample of

1,103 objects. We applied RS, BatchEntropy, BatchKL and

USE strategies and ran them through all available observation

days. The behavior of the diagnostic metrics as a function

of the number of active learning iterations (days since the

beginning of the survey) is shown in Figure 4 (left column).

Numerical values for the final state of these models are

reported in Table I. After 160 iterations, the final training

sample had grown by ≈ 1800 objects (for a total of ≈ 2900).

Observing the behavior of different strategies in Figure 4 (left

column), we see an improvement in all metrics. However, the

difference in FoM results between RS and the best performing

active learning strategy (USE) is merely ≈ 13% (0.04); active

learning strategies struggle to outperform RS.

In order to test if this behavior is derived from the biases

known to exist in the original training, we applied the same

learning strategies to the case where the initial training sample

is composed of only 10 objects randomly chosen from the

original SNPCC spectroscopic sample (5 SNe Ia and 5 non-

Ia). The evolution of all metrics is shown in Figure 4 (right

column) and numerical values for their final state are given

in Table II. In this scenario, the initial classifier does not

contain much information; accuracy, purity and FoM start
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Fig. 4. Evolution of different performance metrics as a function of the number
of days since survey started (active learning iterations) for different learning
strategies. All strategies shown here considered non-constant costs. Left:
initial training corresponding to the original SNPCC spectroscopic sample.
Right: initial training containing only 10 objects (5 SNe-Ia, 5 SNe-nonIa)
randomly chosen from the original SNPCC spectroscopic sample.

with lower values. Nevertheless, they quickly improve with

each iteration, achieving results as good as those obtained

in the previous case. At the final stage, the training samples

contain ≈ 1,810 objects. Since a small initial training is less

biased and more sensitive to the addition of new data, the

active learning strategies clearly outperforms RS. The best

performing active learning strategy (BatchEntropy) achieved a

FoM of 0.34, while RS delivered a FoM of 0.27, a difference

of ≈ 26% (0.07) and an increase of 75% when compared

to the difference between USE and RS in the previous case

case (0.04). This increase comes from a 28% increase in

efficiency delivered by BatchEntropy over RS. Figure 5 shows

the evolution in feature space of the samples queried by RS

and BatchEntropy in comparison to the validation/test samples.

Comparing Figures 3 and 5 it is clear that both strategies

(RS and BatchEntropy) evolve the queried sample towards the

validation set but subjected to the constraints of the available

pool sample at each iteration.

V. SUMMARY AND CONCLUSIONS

Active learning strategies are promising techniques used

to construct optimal training samples given scarce labeling

resources. Nevertheless, stress tests probing their robustness

under realistic conditions are largely missing in the literature.

In many real world situations, the assumptions of sample

representativeness or stability between samples are hard to

meet, though the necessity to optimize the allocation of

labeling resources is paramount.

In this work we focus on the classification of a subclass of

extragalactic astronomical transients: supernovae. While this

issue has received great attention in the last decade [11], [27]–

[31], the community is still far from developing a completely

automated system able to optimize the allocation of spectro-

scopic follow-up resources. In this work, we build upon the

efforts reported in [4] and present for the first time a simulated

data environment which simultaneously takes into account: 1)

the necessity to estimate the current brightness of an object

in order to make a decision about spectroscopic follow-up

(only partial information is available at the time of labeling),

2) the evolution of training and pool samples with time, 3)

the spectroscopic time required to observe each object in 2

different telescopes as a function of time (different labeling

costs per day, object and budget source) and 4) the limited

telescope time available per night (knapsack constraints).

We tested the performance of random sampling (RS) as well

as three batch active learning strategies based on uncertainty

sampling. When using the original training sample provided

within the SNPCC data set (1,103 objects) as a starting point,

active learning strategies did not significantly improve upon

RS. This is a direct consequence of the biases known to exist

between spectroscopic and photometric samples, combined

with the large size of the initial training set, and the limited

number of available nights (active learning iterations). Given

these constraints, we constructed a second data scenario with

a very small initial training set (10 objects). This initial state

contained a negligible amount of information, but it was

unbiased and highly sensitive to additional samples. Here,

all active learning strategies clearly outperformed RS results.

The best strategy (BatchEntropy) improved by 26% the results

delivered by RS. The small initial training set achieved the

same figure of merit using 1,093 fewer spectroscopically

confirmed light curves (labels).

Such results emphasize the importance of planning, in

advance, the construction of training samples for machine

learning applications. By delegating the complete construction

of the training sample to the active learning algorithm, we

can ensure optimal classification results and obviate the use

of legacy data or the need to model discrepancies between

traditional spectroscopic and photometric samples.

Moreover, we showed that active learning strategies are

robust in the presence of complex and realistic constraints on

data collection. However, the fact that different batch strategies

presented similar behavior indicates that our current techniques

for acquiring diverse committees can be improved. This is an
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important issue which will be addressed in a future work.

Finally, we recognize that the scenario presented in this

work is still incomplete. We failed to take into account:

uncertainties due to our feature extraction method and the

extrapolated brightness used to calculate the cost of each

observation12; the probability that a labeling request is not

fulfilled or that it may be incorrect; the impact of the resulting

classifications in further scientific results and observational

effects like airmass (position of a given source in the sky) and

weather conditions (e.g. seeing, cloud cover). This complex

environment makes the classification of transient astronom-

ical sources an excellent test bench for developing learning

algorithms. These are all crucial issues which will shape

the scientific results from the next generation of large scale

astronomical surveys and, consequently, our understanding of

the Universe.
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APPENDIX

A. BALD equivalence to Average KL-divergence

Here we show the equivalence between the BALD objective

and the average KL-Divergence. We start with the BALD ob-

jective, which is the mutual information between the model’s

parameters and the target label of a given data point.

I(θ, y|x,D) = H(p(y|x,D))− Ep(θ|D)[H(p(y|x, θ))]

= H(Ep(θ|D)[H(p(y|x, θ))])−

Ep(θ|D)[H(p(y|x, θ))]

≈ H(
1

C

∑

c

Pθc(y|x))−

.
1

C

∑

c

H(p(y|x, θc))

=
1

C

∑

c

∑

y

Pθc(y|x) log

(

Pθc(y|x)

PC(y|x)

)

=
1

C

∑

c

KL(Pθc(y|x)||PC(y|x)) (12)

Where the approximate equality is because we can only

take finitely many samples from the posterior distribution of

the model parameters. Hence we have shown when one can

only compute Monte Carlo estimates of the BALD objective

it is equivalent the average KL-divergence objective.
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