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1 Model-Independent Signal Detection: A Challenge using Benchmark Monte Carlo
Data and Machine Learning 1

We discuss model-independent signal detection algorithms, with a particular focus on approaches that
are based on unsupervised machine learning. We also offer a set of simulated LHC events, corresponding
to 10/, fb−1 of data. These events can be used as a benchmark dataset, for example for the comparison
of signal detection algorithms. We explain the main features, the data format and describe the use of this
data for an upcoming data challenge. The data is available at the webpage https://www.phenoMLdata.
org.

1.1 Introduction and Goals
Problem

The Standard Model (SM) has been tremendously successful in describing particle physics phenomena.
Nevertheless, many questions still remain unanswered, e.g. the origin of neutrino masses, the nature of
dark matter, or the dynamics of electroweak symmetry breaking. Therefore, it is commonly accepted that
physics beyond the SM (BSM) is needed in order to provide answers to the questions not addressed in
the SM. A key ingredient for the journey towards a new physics discovery is handling the huge amount
of complex experimental data collected at LHC. LHC data was initially analyzed for various signals that
were predicted by high energy models that extend the SM. Typical examples are supersymmetry (SUSY)
or models with extra dimensions. Since these searches did not show any significant deviations from
the SM, the LHC search strategy was expanded by using so-called "simplified models" and "effective
models". For simplified models, a certain production and a decay of a new hypothetical particle is
assumed, and the model is tested using LHC data by optimizing data selection criteria on the energy,
momenta and types of particle predicted by the model. For effective models, a new effective interaction
is added to the SM Lagrangian and the new interaction is typically constrained with the measurement of
SM processes. A sign of new particles typically shows up as an overproduction of events (compared to the
SM) in a specific data-selection where the number of events expected from SM processes is compared
to the number of measured events in statistical tests. A hint of new physics requires that the "SM-
only" hypothesis is highly disfavoured. Often the test is quantified with the help of a p-value defined
as the probability that a given result (or a more significant result) occurs under the SM hypothesis. A
typical requirement for the discovery of an expected signal (such as the Higgs particle) is p < 3× 10−7

corresponding to 5 standard deviations (5σ).
To date, no signal of BSM physics has been found at the LHC. However, the new physics could look
different than generally assumed. This project deals with the question of how to search for a signal in
collider data without adopting a specific signal hypothesis.

Attempts

A few attempts have been made to systematically search for new physics without signal assumption by
scanning specific observables, such as the sum of the transverse momenta, or the invariant mass. Scans
have been done with the help of model-independent (i.e. unsupervised) algorithms to locate anomalies.
Such general searches without an explicit BSM signal assumption have been been performed by the DØ
Collaboration [1–4] at the Tevatron using an unsupervised multivariate signal detection algorithm termed
SLEUTH, by the H1 Collaboration [5,6] at HERA using a 1-dimensional signal detection algorithm, and
by the CDF Collaboration [7, 8] at the Tevatron (using again 1-dimensional algorithms). A version of
these 1-dimensional signal detection algorithms used in general searches is known as BUMPHUNTER
in the HEP community [9]. At the LHC, versions of such searches have been performed by the ATLAS
Collaboration at

√
s = 13 TeV [10], and preliminary versions have been performed by the ATLAS and
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CMS Collaboration at
√
s = 7 and 8 TeV. Here, the ATLAS experiment proposed that the observation

of one or more significant deviations in some phase-space region(s) can serve as a trigger to perform
dedicated and model-dependent analyses where these ‘data-derived’ phase-space region(s) can be used
as signal region(s). Such an analysis can then determine the level of significance by testing the SM
hypothesis in these signal regions in a second dataset. Since the signal region is known also control
selection can be defined to determine the background expectations in the signal region(s).
The field of machine learning (ML), sitting at the intersection of computational statistics, optimization,
and artificial intelligence, has witnessed unprecedented progress over the past decade. Research in ML
has recently led to the development of new and enhanced anomaly detection methods that could be
used and extended for applications employing LHC or astroparticle data. Examples of such outlier
detection algorithms recently proposed for HEP include density-based methods [11], model-independent
searches with multi-layer perceptrons [12] , autoencoders [13–15], variational autoencoders [16, 17] or
ML extended bump-hunting algorithms [18, 19].

Methodology

This contribution aims to initiate a comparison of signal detection algorithms. To this end, we supply
a benchmark dataset containing simulated high-energy collision data. Furthermore, we provide a (non-
exhaustive) list of methods that may be employed to extract a possible signal from this dataset in a
model-independent and/or unsupervised way.

1.2 Data Description
1.2.1 Data generation procedures
We generate LHC events corresponding to a center-of-mass energy of 13 TeV. Events for the background
and signal processes are generated at leading order (LO) with up to two additional partons in the matrix
element using the event generator MG5_aMC@NLO v6.3.2 (Madgraph) and versions above [20] with
the NNPDF PDF set [21] using 5 flavors in the definition of the proton. Madgraph is interfaced to Pythia
8.2 [22], that handles the showering of the matrix element level generated events. The matching with
the parton shower, needed in the case when one or more additional jets are generated in Madgraph, is
done using the MLM merging prescription [23]. Then, a quick detector simulation is performed with
Delphes 3 [24, 25], using a modified version of the ATLAS detector card. Pileup is not included in this
dataset. A repository of the data scripts that are used to generate the events is on GitHub 2.
The final state objects, as described in Table 1, are stored in a one-line-per-event text file (see below
Section 1.2.2 for details). An event consists of a variable number of objects. An event is stored when at
least one of the following requirements are fulfilled:

– At least one (b)-jet with transverse momentum pT > 60 GeV and pseudorapidity |η| < 2.8, or

– at least one electron with pT > 25 GeV and |η| < 2.47, except for 1.37 < |η| < 1.52, or

– at least one muon with pT > 25 GeV and |η| < 2.7, or

– at least one photon with pT > 25 GeV and |η| < 2.37.

Of course, these are unrealistic trigger requirements, but we aim to create a flexible data set that allows
for different types of studies that might need different selection criteria. The η-restriction on the electrons
models a veto in the crack regions as often applied in ATLAS analyses. Such a veto can also be applied
to photons by the user. Note that for the processes with the largest cross sections (W±/γ/Z + jets and
QCD jet production) we have applied cuts on HT > 100 GeV and 600 GeV respectively to make the

2https://github.com/melli1992/unsupervised_darkmachines
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Symbol ID Object
j jet

b b-jet

e- electron (e−)

e+ positron (e+)

m- muon (µ−)

m+ antimuon (µ+)

g photon (γ)

Table 1: Definition of symbols used for final-state objects. Only b-quark jets are tagged, no τ - or c-jets have been
defined.

data generation manageable. The observable HT is defined as the scalar sum of the transverse momenta
of all jets (with pT,ji > 20 GeV and |ηji | < 2.8):

HT =
∑
i

|pT,ji |. (1)

Therefore, if one includes any of these processes in their analysis, one must make sure that the same cuts
are also applied to the the other processes, which impacts the cross sections that are indicated in Table 2
(and therefore the event weights).
The requirements on the final states objects that are stored are

– (b-)jet: pT > 20 GeV and |η| < 2.8,

– electron/muon: pT > 15 GeV and |η| < 2.7,

– photon: pT > 20 GeV and |η| < 2.37.

This means that, for example, a jet with pT = 10 GeV is not included in the dataset. The detector
simulation as performed by Delphes removes any electrons with |η| > 2.5, as the reconstruction
efficiency is set to 0 beyond that point.
The scale choice is set dynamically by Madgraph during the event generation. The resulting cross
sections are not reweighted with any of the available higher-order and/or resummed cross sections. All
relevant SM (background) processes that have been generated are summarized in Table 2. For each
process, the total number of generated events (Ntot) is at least the number that is needed for 10 fb−1 of
data (N

10 fb
−1).

For the BSM scenarios (signal events) we have chosen two SUSY channels: gluino (g̃) pair and lightest
stop (t̃1) pair production. The production channels and decays are

pp→ g̃g̃, g̃ → tt̄χ̃0
1,

pp→ t̃1t̃1, t̃1 → tχ̃0
1.

For the gluino events, we used a simplified model in which the lightest SUSY particle is a 1 GeV neu-
tralino. The considered masses of the gluino are indicated in Table 3. All other SUSY particle are set
to 4.5 TeV. For the stop production scenarios, we assume a more realistic SUSY scenario with a varying
lightest neutralino (χ̃0

1) mass. The masses of t̃1 and χ̃0
1 are provided in Table 3. Again for this scenario,

all other SUSY masses are set to 4.5 TeV.
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SM processes
Physics process Process ID σ (pb) Ntot (N

10 fb
−1)

pp→ jj njets 19718HT>600GeV 415331302 (197179140)

pp→W±(+2j) w_jets 10537HT>100GeV 135692164 (105366237)

pp→ γ(+2j) gam_jets 7927HT>100GeV 123709226 (79268824)

pp→ Z(+2j) z_jets 3753HT>100GeV 60076409 (37529592)

pp→ tt̄(+2j) ttbar 541 13590811 (5412187)

pp→W±t(+2j) wtop 318 5252172 (3176886)

pp→W±t̄(+2j) wtopbar 318 4723206 (3173834)

pp→W+W−(+2j) ww 244 17740278 (2441354)

pp→ t+jets(+2j) single_top 130 7223883 (1297142)

pp→ t̄+jets(+2j) single_topbar 112 7179922 (1116396)

pp→ γγ(+2j) 2gam 47.1 17464818 (470656)

pp→W±γ(+2j) Wgam 45.1 18633683 (450672)

pp→ ZW±(+2j) zw 31.6 13847321 (315781)

pp→ Zγ(+2j) Zgam 29.9 15909980 (299439)

pp→ ZZ(+2j) zz 9.91 7118820 (99092)

pp→ h(+2j) single_higgs 1.94 2596158 (19383)

pp→ tt̄γ(+1j) ttbarGam 1.55 95217 (15471)

pp→ tt̄Z ttbarZ 0.59 300000 (5874)

pp→ tt̄h(+1j) ttbarHiggs 0.46 200476 (4568)

pp→ γt(+2j) atop 0.39 2776166 (3947)

pp→ tt̄W± ttbarW 0.35 279365 (3495)

pp→ γt̄(+2j) atopbar 0.27 4770857 (2707)

pp→ Zt(+2j) ztop 0.26 3213475 (2554)

pp→ Zt̄(+2j) ztopbar 0.15 2741276 (1524)

pp→ tt̄tt̄ 4top 0.0097 399999 (96)

pp→ tt̄W+W− ttbarWW 0.0085 150000 (85)

Table 2: Generated background processes (first column) with the corresponding identification (second column),
the LO cross section σ in pb (third column) and the total number of generated events Ntot (fourth column). In the
last column, we also indicate the number of events corresponding to 10 fb−1 of data (N

10 fb
−1 ).

We include a second BSM model corresponding to a leptophobic topcolor Z ′ model [26], where an
on-shell Z ′ boson is produced that subsequently decays into a pair of top quarks:

pp→ Z ′ → tt̄. (2)

The masses of the Z ′ are provided in Table 3. In Table 3, one may find the process ID, cross sections σ,
and total number of generated events Ntot of the BSM processes mentioned above.
Generally, the processes with lower cross sections are harder to extract out of the background events, as
such processes result in a lower number of signal events. A notable exception that is present in the BSM
dataset is the scenario where the lightest stop mass is 220 GeV (process ID stop_01). Although the cross
section of this production scenario is relatively high, the signal events are nearly indistinguishable from
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BSM processes
Physics process Process ID σ (pb) Ntot (N

10 fb
−1)

pp→ g̃g̃ (1 TeV) gluino_01 0.20 50000 (2013)

pp→ g̃g̃ (1.2 TeV) gluino_02 0.05 50000 (508)

pp→ g̃g̃ (1.4 TeV) gluino_03 0.014 50000 (144)

pp→ g̃g̃ (1.6 TeV) gluino_04 0.004 50000 (44)

pp→ g̃g̃ (1.8 TeV) gluino_05 0.001 50000 (14)

pp→ g̃g̃ (2 TeV) gluino_06 4.8·10−4 50000 (5)

pp→ g̃g̃ (2.2 TeV) gluino_07 1.7·10−4 50000 (2)

pp→ t̃1t̃1 (220 GeV), m
χ̃
0
1

= 20 GeV stop_01 26.7 500000 (267494)

pp→ t̃1t̃1 (300 GeV), m
χ̃
0
1

= 100 GeV stop_02 5.7 500000 (56977)

pp→ t̃1t̃1 (400 GeV), m
χ̃
0
1

= 100 GeV stop_03 1.25 250000 (12483)

pp→ t̃1t̃1 (800 GeV), m
χ̃
0
1

= 100 GeV stop_04 0.02 250000 (200)

pp→ Z ′ (2 TeV) Zp_01 0.38 50000 (3865)

pp→ Z ′ (2.5 TeV) Zp_02 0.12 50000 (1220)

pp→ Z ′ (3 TeV) Zp_03 0.044 50000 (442)

pp→ Z ′ (3.5 TeV) Zp_04 0.018 50000 (179)

pp→ Z ′ (4 TeV) Zp_05 0.008 50000 (80)

Table 3: Generated signal processes (first column) with the corresponding identification (second column), the LO
cross section σ in pb (third column) and the total number of generated events Ntot (fourth column). In the last
column, we also indicate the number of events corresponding to 10 fb−1 of data (N

10 fb
−1 ).

the background events due to their topology, making it extremely difficult to separate the signal events
from the background events.

1.2.2 Description of the data format
The data are provided in a one-line-per-event text format (CSV file), where each line has variable length
and contains 3 event-specifiers, followed by the kinematic features for each object in the event. The
format of CSV files are:

event ID; process ID; event weight; MET; METphi; obj1, E1, pt1, eta1, phi1;
obj2, E2, pt2, eta2, phi2; . . .

The event ID is an event specifier. It is an integer to identify the generation of that particular event,
included for debugging purposes only. The process ID is a string referring to the process that generated
the event, as mentioned in Tables 2 and 3. The event weight w is defined as

w =
σ

Nlines
×
(

10 fb−1
)
, (3)

with σ the cross section for a particular process, and Nlines the number of events in a single CSV file.
With the release of this contribution we provide files for Nlines = N

10 fb
−1 (with N

10 fb
−1 in Table 2),

such that all weights are 1. Additionally, when N
10 fb

−1 < 20000, we provide a second CSV file with
Nlines = 20000. These conclude the event specifiers of each line in the CSV file.
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Fig. 1: Transverse momentum pT (left) and energy E (right) in GeV of the jets for all backgrounds.

Concerning the kinematic features, the MET and METphi entries are the magnitude Emiss
T and the az-

imuthal angle φ
E

miss
T

of the missing transverse energy vector of the event. The Emiss
T is based on the

truth Emiss
T , meaning the transverse energy of those objects that genuinely escape detection. The object

identifiers (obj1, obj2,. . . ) are strings identifying each object in the event, using the identifiers of Ta-
ble 1. Each object identifier is followed by 4 comma-separated values fully specifying the 4-vector of
the object: E1, pt1, eta1, phi1. The quantities E1 and pt1 respectively refer to the full energy E and
transverse momentum pT of obj1 in units of MeV. The quantities eta1 and phi1 refer to the pseudo-
rapidity η and azimuthal angle φ of obj1.
As an example, an event corresponding to the final state of the tt̄ + 2j process with two b-jets (with
E = 33.2 GeV and E = 55.8 GeV) and one jet (with E = 100.4 GeV) reads:

94;ttbar;1;112288;1.74766;b,331927,147558,-1.44969,-1.76399;j,100406,85589,-0.568259,-
1.17144;b,55808.8,54391.4,-0.198215,1.726

In Figures 1-4 we show the (stacked) distributions of the kinematic variables E, pT , η, and φ of the jets
and leptons in all of the generated background processes. In Figure 6 we show the number of jets Njet

and leptons (Nlepton) for the generated backgrounds. The Emiss
T and φ

E
miss
T

distributions are shown in
Figure 5, and the HT distribution is shown in Figure 7. Note that only for Figure 7, we have filtered
out the events with HT < 600 GeV. For the other Figures, we show the events for all values of HT for
most backgrounds, except for the ones with tags njets (HT > 600 GeV), w_jets, gam_jets and z_jets
(HT > 100 GeV). We stress again that for any analysis, the same kinematic cuts on all the background
and signal events should be made.

1.2.3 Data storage
The generated MC data is stored in the form of ROOT files (including all stable hadrons) and in CSV
files including only the information as described above. The CSV files corresponding to 10 fb−1 of data
per process are available in https://www.PhenoMLdata.org for further validation. We encourage the
community to explore the data, and report any issue to the authors of the proceedings. In the near future
we plan to extend the dataset and to make the full set of ROOT files available, which currently take about
150 TB of disk space.
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Fig. 2: Pseudorapidity η (left) and azimuthal angle φ (right) of the jets for all backgrounds.
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Fig. 3: Transverse momentum pT (left) and energy E (right) in GeV of the leptons (e+, e−, µ+, µ−) for all
backgrounds.
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Fig. 4: Pseudorapidity η (left) and azimuthal angle φ (right) of the leptons (e+, e−, µ+, µ−) for all backgrounds.
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Fig. 5: Missing transverse energy Emiss
T in GeV and azimuthal angle φ

E
miss
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for all backgrounds.
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Fig. 6: Number of jets (left) and leptons (right).
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Fig. 7: The scalar sum of the jet transverse momenta HT in GeV (see Eq. (1)) for the all backgrounds with
HT > 600 GeV imposed.
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1.2.4 Benchmarking
The dataset presented in this paper is the result of an effort started back in 2018 in one of the working
groups of the DarkMachines initiative 3. We plan to use this dataset as a benchmark dataset to open a
challenge, addressed to both particle physics and computer science communities. The challenge will aim
at stimulating these communities to design and employ new methods/algorithms for detecting and char-
acterizing signals in datasets featuring degenaracy, high dimensionality, and low signal-to-noise ratios,
such as those faced when searching for new physics at the LHC.
Anomaly detection datasets used in ML are e.g. credit card fraud detection data [27]. Other challenges
similar in spirit have been previously ran, e.g. in 2006 teams of theorists compared LHC data analysis
approaches with mock datasets 4 and a QCD-oriented LHC Olympics 2020 [28] 5 On the other hand,
we provide data set with very high statistics and including event-level features as well as full 4-vectors
features, with several potential use cases.
The dataset in this paper (corresponding to an integrated luminosity of 10 fb−1 of data) can be used by
the interested readers for training and validation, using the BSM signal samples provided. For the chal-
lenge, we will provide a statistically independent dataset, where signal events are included. These signal
events are generated e.g. by one or more (undisclosed) types of BSM processes. The goal of the chal-
lenge will be to identify and characterize such signals. The submitted solutions will be judged and ranked
according to specified metrics, based on the classification performance of the proposed algorithm with
respect to the dataset with true labels assigned. More details will be provided when officially opening
the challenge, and in a follow-up paper.

1.3 Approaches to the problem
The task at hand is to distinguish background from signal events. Since signal events are very similar
to background events in terms of their topology, it is usually impossible to identify them by looking at
individual events. Therefore, one needs to take into account effects that only appear when examining
distributions in a collection of events. Since the signal and background events can be viewed as samples
drawn from an (unknown in the case of signal) multi-dimensional probability distribution, and we only
have a finite amount of data, we are restricted to statistical investigations, e.g. in the form of a hypothesis
test against the null hypothesis that the given dataset does not contain any signal. In this section, we aim
to give some examples for a signal detection algorithm.
In order to maximize the power of the test, it may be very helpful to transform the low-level (raw) features
of the events into high-level ones. This crucial step of feature selection/engineering can be performed by
using unsupervised learning techniques [29], e.g. by creating low-dimensional (latent) model of the data.
There are at least four different approaches to design the signal detection algorithm and train it on data.

(a) Training the algorithm on real data, possibly being a mixture of signal and background. This is
necessary when a reliable or accurate model for the background is not available. It will then be
tested on another independent sample of real data.

(b) Training the algorithm on computer-generated backgrounds. It will then be tested on real data.

(c) Training the algorithm by two-sample comparison of background data and real data (e.g. [11, 12])

(d) Training the algorithm on a specific signal and background. This is what is typically done at LHC.
Another possibility would be to train the algorithm on a large number of possible signals with a
large variety.

3https://www.darkmachines.org/
4see e.g. http://public-archive.web.cern.ch/en/Spotlight/SpotlightOlympics-en.html
5The LHC Olympics 2020 is a low statistics dataset and a challenge to study anomalies in jets, i.e. to build an “anomaly jet

detection algorithm” with inputs being the kinematical features of stable hadrons.
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In all cases, the outcome can be reduced to constructing one or more variables which maximize the power
to discriminate signal from background (e.g. the probability of being an outlier, see Fig 8).
In the cases where the training involves a real dataset, it is possible to replace it by a mock dataset where
signals of various kinds are injected. This is done to validate the algorithm and assess its performance to
spot outliers.
In the approaches involving the background-only data, one should keep in mind that the simulated data
are not a perfect description of the LHC data, and mismodeling may show up as fake new physics sig-
nals.
Several traditional ML techniques and various deep learning techniques enable the design of an algo-
rithm that promise to serve our purpose of identifying new physics from LHC data: Kernel Density
Estimation [30], Gaussian Mixture Models [31], Flow models [32], Variational Autoencoders [33] and
GANs [34]. In the subsequent subsections we have listed four overlapping approaches to the problem of
finding new physics: anomaly detection, clustering, dimensional reduction and density estimation, all of
whom could potentially be supported by the above-mentioned ML techniques.

1.3.1 Anomaly detection
Anomaly detection generally describes the process of identifying unexpected events in a dataset. With
the aid of ML tools, this can be achieved in a supervised, semi-supervised or unsupervised manner.
Since, in a model-independent scenario, we do not have labels for new physics signals, we are in princi-
ple only interested in the unsupervised approach. Nevertheless, one could label the SM expectation of
some observable. A special feature of this label is that it does not correspond to an individual event, but
to a collection of events. This allows us to employ all the possible approaches mentioned above, while
still being unsupervised with respect to the signal. A successful anomaly detection algorithm would
then be able to tag the signal events as outliers. A potential problem of the approaches is that very rare
SM events may also be part of the collection of outliers.

We present an instructive toy example in Figure 8. We simulated data from a background expectation
distributed exponentially and we combined it with a narrow Gaussian signal anomaly. In order to give an
anomaly score to the points we trained the Local Outlier Factor (LOF) [35] on a background-only simu-
lation, and subsequently used it on the dataset containing both inliers and outliers (this would correspond
to approach (b) mentioned above). Despite its simplicity, this example shows two interesting characteris-
tics. First, it is clear that feature selection is important, since the variable on the x-axis is discriminating,
while the variable on the y-axis is less discriminating. This is because the exponential distribution of the
background has a different variance in the two directions. Second, the example has the characteristics
that it is difficult to separate an anomaly from the background with a simple selection on one of the two
plotted variables. The purpose of anomaly detection in this context is not to find all anomalous points,
but to be able to reliably state when a point (or a set of points) is anomalous and worth studying. The
LOF gives a score to all points in order to assess how much they differ from the background. On the
right-hand side of Figure 8, we see that most outliers have a high probability of being part of the signal,
and not belong to the background.

Once all points are assigned an anomaly score, one may compare the distribution of such scores to a
validation set containing only SM events. Therefore, we use the framework of a two-sample test, aimed
at detecting statistically significant differences in the score distributions of inliers and outliers.

1.3.2 Clustering
We expect data amenable for analysis to lack in class labels (e.g. it is not known if the data is a signal
event); it will then be necessary to extract information in an unsupervised fashion. A solution is to in-
voke clustering techniques [36,37], where the goal is to group the data into clusters, each cluster bearing
certain unique properties. Specifically, the goal is to partition the data such that the average distance
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Fig. 8: Left: A narrow Gaussian anomaly centered around (2, 2) (in red) is added to an exponentially-distributed
background (in blue). Right: The probability of belonging to the signal events (outliers) is assigned to each point of
the dataset and we can perform a counting. In this case, higher probabilities are correctly assigned to the outliers.

between objects in the same cluster (the average intra-distance) is significantly less than the distance be-
tween objects in different clusters (the average inter-distance). Several approaches have been developed
to cluster data based on diverse criteria, such as the cluster representation (e.g. flat, hierarchical), the
criterion function to identify sensible clusters (e.g. sum-of-squared errors, minimum variance), and the
proximity measure that quantifies the degree of similarity between data objects (e.g. Euclidean distance,
Manhattan norm, inner product). Our goal is to experiment with a variety of clustering approaches to
gain a better understanding of the type of patterns emerging from clustering structures.
In order to analyze clusters to identify novel groupings that may point to new physics, one approach is
to use what is known as cluster validation [38], where the idea is to assess the value of the output of
a clustering algorithm by computing statistics over the clustering structure. Clusters with high degree
of cohesiveness, where events within the group are sampled from regions of high probability density,
are particularly relevant for analysis. In addition, one could carry out a form of external cluster valida-
tion [39], where the idea is to compare the output clusters to existing, known classes of particles. While
finding clusters resembling existing classes may serve to confirm existing theories, clusters bearing no
resemblance to known classes can potentially drive the search for new physics models.

1.3.3 Dimensionality Reduction
Data stemming from LHC arrive in copious amounts, are highly dimensional, and lack class labels;
clustering can be useful to find patterns hidden in the data, a task whose importance has been highlighted
in the previous section. Unfortunately, highly dimensional data create a plethora of complications during
the data analysis process. Two possible solutions exist: we can either pre-process the data through
dimensionality reduction techniques [40], or we can make use of specialized approaches [41].
Dimensionality reduction can be done through feature selection, by determining which features are most
relevant, i.e. those that possess a high power to discriminate signal from background. This may come with
some information loss, but it is commonly the case at the LHC that only a subset of information is needed
to distinguish among different types of data. Another approach is to invoke principal component analysis:
the data is transformed while eliminating cross correlations among the new features; the resulting subset
can be further analyzed to filter out irrelevant features.
Another promising direction is to use ML to attain a reduced representation of the data by performing
non-linear transformations [42,43]. This approach can have a strong impact in the search for new physics
since it implements data transformations that can unveil hidden patterns corresponding to new particle
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signals.

1.3.4 Density estimation
Events produced at the LHC (either real or simulated) can be thought as samples drawn from an
unknown probability density function (PDF) that characterizes the complex physical processes leading
to the generation of the events themselves. The PDF of a new physics signal might be different from
the PDF of the SM. However, also the estimated PDFs of the SM, and the one from real experimental
data may be different. Spotting and analyzing the differences in these two densities can provide a great
deal of information about the underlying process (i.e. the true physical model) that generates the signal
events.
However, estimating the PDF reliably starting from the raw data is far from trivial, especially if the
number of features is high. This constitutes an active field of research in data science and, depending
on the specific task, different approaches may be suitable [30, 44]. One such approach is kernel density
estimation, which estimates the PDF by a sum of kernel functions (e.g. multivariate Gaussians) centered
around each data point [45].
Assuming density estimation can be performed accurately, there are several ways to use it for model
independent unsupervised analysis. For instance, one can compare the PDFs of real and simulated data
from the LHC to detect differences. They point towards interesting signal regions, which can be used in
order to guide further scrutiny. Furthermore, one could also perform clustering and anomaly detection
in a way independent from the approaches mentioned before, see e.g. [46, 47].
One difficulty in applying density estimation on the dataset described in this work is the fact that
the events change in dimensionality because the number of objects is not the same in every event.
Additionally, there are both continuous data (for example energy and angles) and categorical data (object
symbol). To circumvent these issues, one might try to map events to a different parameter space, a
potential methodology is described in Ref. [17].

1.4 Conclusions
In this paper we have described a dataset aimed at constituting a benchmark for future model-independent
studies of new physics detection at the LHC. We described the details of the data generation and the data
format, which allow the user to easily handle the data with any programming language. We encourage
the community to acquire familiarity with this dataset, which will also form the basis for a signal detec-
tion challenge to be announced soon. The challenge will be addressed to both computer scientists and
particle physicists, fostering fruitful collaborations between them. Furthermore, we outlined some ap-
proaches, inspired by machine learning, to the problem of signal identification in background-dominated
situations, like the ones commonly faced in high-energy physics.
With a benchmark dataset such as the one described in this paper it is possible to test and compare dif-
ferent techniques and algorithms for signal detection. We believe the effort of designing and comparing
new algorithms tailored to the needs of high-energy physics will prove very useful for the future of the
field.
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