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Abstract. We describe a methodology to assist scientists in quantifying the degree
of evidence in favor of a new proposed theory compared to a standard baseline the-
ory. The figure of merit is the log-likelihood ratio of the data given each theory. The
novelty of the proposed mechanism lies in the likelihood estimations; the central idea
is to adaptively allocate histogram bins that emphasize regions in the variable space
where there is a clear difference in the predictions made by the two theories. We de-
scribe a software system that computes this figure of merit in the context of particle
physics, and describe two examples conducted at the Tevatron Ring at the Fermi Na-
tional Accelerator Laboratory. Results show how two proposed theories compare to
the Standard Model and how the likelihood ratio varies as a function of a physical
parameter (e.g., by varying the particle mass).

1 Introduction

Common to many scientific fields is the problem of comparing two or more competing
theories based on a set of actual observations. In particle physics, for example, the behavior
of Nature at small distance scales is currently well described by the Standard Model. But
compelling arguments suggest the presence of new phenomena at distance scales now being
experimentally probed, and there exists a long array of proposed extensions to the Standard
Model.

The problem of assessing theories against observations can be solved in various ways.
Some previous work bearing an artificial intelligence flavor has attempted to use observa-
tions to explain processes in both particle physics and astrophysics [4]. From a statistical
view, a common solution is to use a maximum-likelihood approach [1, 2], that selects the
theory T maximizing P(D|T ) (i.e., the conditional probability of a set of actual observa-
tions D assuming T is true). Implicit to this methodology is the–often false–assumption
that the form of the distributions characterizing the set of competing theories is known. In
practice, a scientist suggests a new theory in the form of new equations or new parameters
(e.g., new suggested mass for an elementary particle). In particle physics, a software is then
used to simulate the response of the particle detector if the new proposed theory T were
true, resulting in a data file made of Monte Carlo events from which one can estimate the
true distribution characterizing T . At that point one can compare how close T matches the
actual observations (stored in D) obtained from real particle colliders.

To estimate the true distribution of a theory T , we take the Monte Carlo data and follow
a histogram approach [5]. We create a series of bins {bk} over the variable space and attempt



to predict the number of events expected in every bin bk if theory T were true. The novelty
of our approach lies in the adaptive mechanism behind this bin allocation. Bins are selected
to emphasize regions where the number of events predicted by T is significantly different
from those predictions generated by competing theories, in a sense discovering regions in
the variable space where a discrepancy among theories is evident.

This paper is organized as follows. Section 2 provides background information and no-
tation. Section 3 provides a general description of the mechanism to compute likelihood
ratios. Section 4 describes a solution to the problem of adaptive bin allocation. Section 5 re-
ports on the experimental analysis. Lastly, Section 6 gives a summary and discusses future
work.

2 Background Information and Notation

In modern particle accelerators, collisions of particles travelling at nearly the speed of light
produce debris that is captured by signals from roughly one million channels of readout
electronics. We call each collision an event. Substantial processing of the recorded signals
leads to an identification of the different objects (e.g., electrons (e±), muons (µ±), taus
(τ±), photons (γ), jets (j), b-jets (b), neutrinos (ν), etc.) that have produced any particular
cluster of energy in the detector. Each object is characterized by roughly three variables,
corresponding to the three components of the particle’s momentum. An event is represented
as the composition of many objects, one for each object detected out of the collision. These
kinematic variables can be usefully thought of as forming a variable space.

We store events recorded from real particle accelerators in a dataset D = {ei}, where
each event e = (a1, a2, · · · , an) ∈ A1 × A2 × · · · × An is a variable vector characterizing
the objects identified on a particular collision. We assume numeric variables only (i.e., ai ∈
<) and that D consists of independently and identically distributed (i.i.d.) events obtained
according to a fixed but unknown joint probability distribution in the variable space.

We assume two additional datasets, D̃n and D̃s, made of discrete Monte Carlo events
generated by a detector simulator designed to imitate the behavior of a real particle collider.
The first dataset assumes the realization of a new proposed theory TN ; the second dataset is
generated under the assumption that the Standard Model TS is true. Events follow the same
representation on all three datasets.

3 Overview of Main Algorithm

In this section we provide a general description of our technique. To begin, assume a physi-
cist puts forth an extension to the Standard Model through a new theory TN . We define our
metric of interest as follows:

L(TN ) = log10

P(D|TN )

P(D|TS)
(1)

where D is the set of actual observations obtained from real particle colliders. Metric L
can be conveniently thought of as units of evidence for or against theory TN . The main
challenge behind the computation of L lies in estimating the likelihoods P(D|·). We explain
each step next.



3.1 Partitioning Events into Final States

Each event (i.e., each particle collision) may result in the production of different objects,
and thus it is appropriate to represent events differently. As an example, one class of events
may result in the production of an electron; other events may result in the production of a
muon. The first step consists of partitioning the set of events into subsets, where each subset
comprises events that produced the same type of objects. This partitioning is orthogonal;
each event is placed in one and only one subset, also called final state. Let m be the number
of final states; the partitioning is done on all three datasets: D = {Di}

m
i=1, D̃n = {D̃ni}

m
i=1,

and D̃s = {D̃si}
m
i=1. Each particular set of subsets {Di, D̃ni, D̃si} is represented using the

same set of variables. Estimations obtained from each set of subsets are later combined into
a single figure (Section 3.3).

3.2 Computation of Binned Likelihoods

The second step consists of estimating the likelihoods P(D|·) adaptively by discovering
regions in the variable space where there is a clear difference in the number of Monte Carlo
event predictions made by TN and TS . Since we treat each subset of events (i.e., each final
state) independently (Section 3.1), in this section we assume all calculations refer to a single
final state (i.e. a single set of subsets of events {Di, D̃ni,D̃si}).

We begin by putting aside for a moment the real-collision dataset Di. The discrete Monte
Carlo events predicted by TN and TS in datasets D̃ni and D̃si are used to construct smooth
probability density estimates Pi(e|TN ) and Pi(e|TS). Each density estimate assumes a mix-
ture of Gaussian models:

Pi(e|T ) = PT
i (e) =

r
∑

l=1

αl φ(e;µl, Σl) (2)

where r is the number of Gaussian models used to characterize the theory T under consider-
ation. The mixing proportions αl are such that

∑

l αl = 1, and φ(·) is a multivariate normal
density function:

φ(e;µ,Σ) =
1

(2π)d/2|Σ|1/2
exp [−

1

2
(e − µ)tΣ−1(x − µ)] (3)

where e and µ are d-component vectors, and |Σ| and Σ−1 are the determinant and inverse
of the covariance matrix.

At this point we could follow the traditional approach to Maximum Likelihood estima-
tion by using the real-collision dataset Di and the above probability density estimates:

P(Di|T ) =
∏

j

Pi(ej |T ) =
∏

j

PT
i (ej) (4)

where T takes on TN or TS and the index j goes along the events in Di.
The densities Pi(e|T ) can in principle be used to compute an unbinned likelihood ra-

tio. But in practice, this ratio can suffer from systematic dependence on the details of the
smoothing procedure. Over-smoothed densities cause a bias in favor of distributions with
narrow Gaussians, while the use of under-smoothed densities cause undesired dependence
on small data irregularities. The calculation of a binned likelihood ratio in the resulting
discriminant reduces the dependence on the smoothing procedure, and has the additional



Fig. 1. (Left) The optimally-binned histogram of the discriminant D for the predictions of TS (line
L2), TN (line L3), and real data D (line L1). (Right) The mapping of the bins in D back into regions
in the original variable space. The dark region corresponds to points e in the variable space for which
D(e) < θ; the light region corresponds to points e in the variable space for which D(e) > θ (θ = 0.4).

advantage that it can be used directly to highlight regions in the variable space where pre-
dictions from the two competing theories TN and TS differ significantly. We thus propose
to follow a histogram technique [5] as follows.

Constructing a Binned Histogram

We begin by defining the following discriminant function:

D(e) =
Pi(e|TN )

Pi(e|TN ) + Pi(e|TS)
(5)

The discriminant function D takes on values between zero and unity, approaching zero in
regions in which the number of events predicted by the Standard Model TS greatly exceeds
the number of events predicted by the new proposed theory TN , and approaching unity
in regions in which the number of events predicted by TN greatly exceeds the number of
events predicted by TS . We employ function D for efficiency reasons: it captures how the
predictions of TN and TS vary in a single dimension.

We use D to adaptively construct a binned histogram. We compute the value of the
discriminant D at the position of each Monte Carlo event predicted by TN (i.e., every event
contained in D̃n) and TS (i.e. every event contained in D̃s). The resulting distributions in D
are then divided into a set of bins that maximize an optimization function. This is where our
adaptive bin allocation strategy technique is invoked (explained in detail in Section 4). The
result is a set of bins that best differentiate the predictions made by TN and TS . The output
of the Adaptive-Bin-Allocation algorithm is an estimation of the conditional probability
P(Di|T ).

As an illustration, Figure 1 (left) shows the resulting binned histogram in D for a real
scenario with a final state e+e− (i.e., electron and positron). The Adaptive-Bin-Allocation
algorithm chooses to consider only two bins, placing a bin edge at D = 0.4. Note events
from TS (line L2) tend to lie at values for which D(e) is small, and events from TN (line
L3) tend to lie at values for which D(e) is large.

Figure 1 (right) shows how the two bins in the discriminant map back onto the original
variable space defined on me+e− (the invariant mass of the electron positron pair), and
positron pseudorapidity. The dark region corresponds to points e in the variable space for
which D(e) < 0.4; similarly the light region corresponds to points e for which D(e) > 0.4.
Each region is assigned a binned probability (Section 4); all probabilities are then combined
into a final state probability P(Di|T ).



3.3 Combining Likelihoods and Incorporating Systematic Errors

Once we come up with an estimation of P(Di|T ), the next step consists of combining all
probabilities from individual final states into a single probability for the entire experiment
through the product P(D|T ) =

∏

i P(Di|T ), where T takes on TN or TS and the index i

goes along all final states. As a side note, a single particle accelerator has normally several
experiments running that can also be combined through such products.

Finally, systematic uncertainties are introduced into the analysis to reflect possible im-
perfections in the modelling of the response of the physical detector. There are usually
roughly one dozen sources of systematic error, ranging from possible systematic bias in the
measurements of particle energies to an uncertainty in the total amount of data collected.

4 Adaptive Bin Allocation

We now explain in detail our approach to estimate the likelihood P(Di|T ) for a particular
final state. To begin, assume we have already computed the value of the discriminant D at
the position of each Monte Carlo event predicted by TN and TS (Section 3.2), and decided
on a particular form of binning that partitions D into a set of bins {bk}. Let µk|T be the
number of events expected in bin k if theory T is true3. Often in the physical sciences the
distribution of counts in each bin is Poisson; this is assumed in what follows. The probability
of observing λk events in a particular bin k is defined as:

P(λk|T ) =
e−µk|T µk|T

λk

λk!
(6)

Now, the probability of observing the real data Di assuming the correctness of T and
neglecting correlated uncertainties among the predictions of T in each bin, is simply:

P(Di|T ) =
∏

k

P(λk|T ) (7)

where the index k runs along the bins and λk is the number of events observed in the real
data Di within bin k.

The question we now pose is how should the bins be chosen? Many finely spaced bins
allow finer sampling of differences between TN and TS , but introduce a larger uncertainty
in the prediction within each bin (i.e., the difference in the events predicted by TN and
TS under finely spaced bin comes with low confidence levels). On the other hand, a few
coarsely spaced bins allow only coarse sampling of the distributions predicted by TN and
TS , but the predictions within each bin are more robust. The question at hand is not only
how many bins to use, but also where to place their edges along the discriminant D [3].

4.1 Searching the Space of Binnings

In selecting an optimal binning we focus our analysis on the two theories TN and TS ex-
clusively (choosing a set of optimal bins is independent of the real data used for theory
validation). Our goal is to produce a set of bins {bk} that maximize the difference in predic-
tions between the two theories. We start by defining an optimization function over the space
of binnings. We merit partitions that enhance the expected evidence in favor of TN , E(TN ),

3 Recall T is either the new theory TN or the Standard Model TS .



if TN is correct, plus the expected evidence in favor of TS , E(TS), if TS is correct. Given a
particular set of bins, {bk}

v
k=1, the proposed optimization function is defined as follows:

O({bk}) = E(TN , {bk}) + E(TS , {bk}) (8)

The evidence for each theory is as follows:

E(TN , {bk}) =
∑

λ1

∑

λ2

· · ·
∑

λv

(

∏

k

P(λk|TN )

)

× log10

(∏

k P(λk|TN )
∏

k P(λk|TS)

)

(9)

and similarly for E(TS , {bk}). Each summation on the left varies over the range [0,∞]. The
evidence for each theory has a straightforward interpretation. Recall that

∏

k P(λk|T ) =
P(Di|T ) and therefore each evidence E is the relative entropy of the data likelihoods (if
log10 is replaced with log2), averaged over all possible outcomes on the number of real
events observed on each bin. The two components in equation 8 are necessary because
relative entropy is not symmetric. The representation for O can be simplified as follows:

O({bk}) =
∑

k

∑

λk

(P(λk|TN ) − P(λk|TS))×(log10 P(λk|TN ) − log10 P(λk|TS)) , (10)

In practice one cannot evaluate O by trying all possible combinations in the number of real
events observed on each bin. Instead we estimate the expected number of events in bin k if
theory T is true, µk|T , and consider ±s standard deviations (s is user-defined) around that
expectation, which can be quickly evaluated with arbitrary accuracy by explicitly computing
the sum for those bins with expectation µk|T ≤ 25 and using a gaussian approximation for
those bins with expectation µk|T > 25.

Although in principle maximizing O requires optimizing the positions of all bin edges
simultaneously, in practice it is convenient to choose the bin edges sequentially. Starting
with a single bin encompassing all points, this bin is split into two bins at a location chosen
to maximize O. At the next iteration, a new split is made that improves O. The algorithm
continues iteratively until further division results in negligible or negative change in O.
Figure 2 (Algo. 1) illustrates the mechanism behind the binning technique. The complexity
of the algorithm is linear in the size of the input space (i.e., in the size of the two datasets
D̃ni and D̃si).

4.2 Example with Gaussians of Varying Width

To illustrate the mechanism behind the bin-allocation mechanism, assume a scenario with
two Gaussian distributions of different widths over a variable x. Figure 3(left) shows the
true (but unknown) distributions f1(x) and f2(x), where fi(x) = n√

2πσi

e(−(x−µ)2/2σi
2)

with i = {1, 2} and parameter values n = 100, µ = 25, σ1 = 5, and σ2 = 8. The units
on the vertical axis are the number of events expected in the data per unit x. We used one
thousand points randomly drawn from f1(x) and from f2(x). These points are shown in
the histogram in Fig. 3(right), in bins of unit width in x. The algorithm proceeds to find
edges sequentially before halting, achieving a final figure of merit. The resulting bins are
concentrated in the regions x ≈ 20 and x ≈ 30, where f1(x) and f2(x) cross.



Algorithm 1: Adaptive-Bin-Allocation
Input: D, D̃ni, D̃si

Output: Set of bins {bk}
ALLOCATE-BINS(D,D̃ni,D̃si)
(1) Evaluate D at each discrete Monte Carlo event in D̃ni and D̃si.
(2) Estimate probability densities f(µk|T ) for T = TN and T = TS .
(3) Initialize set of bins {b0}, where b0 covers the entire domain of D.
(4) repeat
(5) Search for a cut point c over D that maximizes function O.
(6) Replace the bin bk where c falls with the two corresponding new bins.
(7) until The value o∗ maximizing O(·) is such that o∗ < ε

(8) end
(9) return {bk}

Fig. 2. Steps to generate a set of bins that maximize the distance between the events predicted by
theory TN and theory TS .

Fig. 3. (Left) Two Gaussian distributions, f1 and f2, with same mean but different variance. (Right)
The bin-allocation mechanism identifies those regions where f1 and f2 cross.

5 Experiments

We describe two examples conducted at the Tevatron ring at the Fermi National Accelerator
Laboratory in Chicago, Illinois. The accelerator collides protons and anti-protons at center
of mass energies of 1960 GeV (i.e., giga electron volts). A typical real-collision dataset of
this collider is made of about 100 thousand events.

We divide each of the Monte Carlo data sets D̃n, and D̃s into three equal-size sub-
sets. The first subset is used to compute the probability densities Pi(e|TN ), Pi(e|TS) (Sec-
tion 3.2); the second subset is used to run the adaptive bin-allocation mechanism (Section 4);
the last subset is used to estimate the figure of merit L(TN ) = log10

P(D|TN )

P(D|TS)
(Section 3).

Each experiment produces several hundreds of final states. The running time for each ex-
periment was approximately one hour on a Linux machine with a Pentium 3 processor and
1 GB of memory.

Searching for Leptoquark Pair Production. The first experiment is motivated by a search
for leptoquark pair production as a function of assumed leptoquark mass. We show how a
theory that advocates leptoquarks with small masses –that if true would result in an abun-
dance of these particles compared to their heavier counterparts– is actually disfavored by
real data. Figure 4 (left) shows the log likelihood ratio L(TN ) (equation 1) for different
leptoquark masses. Units on the horizontal axis are GeV. The new proposed theory is dis-
favored by the data for small mass values, but becomes identical to the Standard Model



Fig. 4. (left) The log likelihood ratio L(TN ) (equation 1) for different leptoquark masses. (second
left) The posterior distribution p(MLQ|D) obtained from a flat prior and the likelihood on the left.
(third left) The log likelihood ratio for different Z ′ masses. (right) The posterior probability p(mZ′ |D)
flattens out beyond mZ′ ≈ 250 GeV. Units on the horizontal axis are GeV.

for large mass values. Figure 4 (second left) shows the posterior distribution p(MLQ|D)
obtained from a flat prior and the likelihood on the left.

Searching for a Heavy Z ′ Particle The second experiment is similar in spirit to the previ-
ous one. Figure 4(third from left) shows a search for a heavy Z ′ as a function of assumed
Z ′ mass. Z ′s with small masses, which would be more copiously produced in the Teva-
tron than their heavier counterparts, are disfavored by the data. The posterior probability
p(mZ′ |D) flattens out beyond mZ′ ≈ 250 GeV (Figure 4, right), indicating that the data is
insufficiently sensitive to provide evidence for or against Z ′s at this mass.

6 Conclusions and Future Work
This paper describes an approach to quantify the degree of evidence in favor of a new pro-
posed theory compared to a standard baseline theory. The mechanism adaptively allocates
histogram bins that emphasize regions in the variable space where there is a clear difference
in the predictions made by the two theories. The proposed mechanism carries two important
benefits: 1) it simplifies substantially the current time needed to assess the value of new the-
ories, and 2) it can be used to assess a family of theories by varying a particular parameter
of interest (e.g., particle mass).

We expect the procedure outlined here to have widespread application. The calculation
of likelihood ratios is common practice in the physical and social sciences; the main algo-
rithm can be easily adapted to problems stemming from other scientific fields. One barrier
lies in generating Monte Carlo data to model a theory distribution. Particle physicists have
invested huge amounts of effort in producing a detector simulator designed to imitate the
behavior of real particle colliders.
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