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Physics 3312                                                Lecture 26                                                 April 22, 2019 
 
LAST TIME: Fresnel diffraction with rectangular apertures, Fresnel integrals, Cornu Spiral, and 
introduced Fourier optics 
 
Reminder 
 
One of Fourier’s theorems states that a perdiodic function may be written as a series of sines and 
cosines given by 
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Obviously, this expansion would not do us any good unless we have a way to determine the 
coefficients Am and Bm.  Fortunately, sines, cosines, and complex exponentials fall into a category 
of functions that are known as complete sets of orthogonal functions.  As such, they have 
conditions that are called orthogonality conditions that allow us to determine Am and Bm.  These 
conditions are not hard to prove for sines and cosines, but in the interest of time, I will state what 
they are. 
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 is the Kronecker delta, which is 1 if a = b and 0 if a ≠ b.  Many other functions have	௔௕ߜ
orthogonality conditions that allow for other types of expansions.  If we wish to calculate the value 
for Am, we just multiply our representation of the function by cos   .and integrate over the period	ݔ݈݇
Only values for ݈ ൌ ݉	contribute so we find 
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We do the same multiplication by the sine function to obtain a value for Bm given by 
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Let’s convert these generic equations into equations that are specific for our case in optics.  To do 
this we make the following substitutions.  Let	ߣ → ,ሚߣ ݔ → ,ݕ and	݇ → ෨݇

௒.  Therefore, we may write 
the following equations given by 
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It is useful to pay attention to whether the function is even or odd because, since the sine is odd 
݂ሺݕሻ ൌ െ݂ሺെݕሻ and the cosine is even ݂ሺݕሻ ൌ ݂ሺെݕሻ, Bm = 0 for even functions and Am = 0 for 
odd functions.  These follow from the orthogonality conditions.  Consider a function that would 
simulate the Ronchi ruling we mentioned and saw demonstrated in the video.  Its aperture function 
would be represented by the following graph. 
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constant period of ߣሚ.  We may vary the peak 
width and period independently of one 
another.  The Fourier series is not hard to 
work out by doing the integrals, and the result 
is given by 
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Where you will recall the the sinc function is just given by (sin x)/x.  We can imagine getting to a 
single pulse instead of a periodic set of pulses by stretching out the period and narrowing the pulse.  
Here are some figures from Hecht that shows how the process works. 
 

 
 
 
 
 
 
 
 
 

As this process continues, we reach a point where 
the spacing between the values of As is continuous, 
and the sums we used are replaced by integrals.  This 
means that 
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Because we know how the sine, cosine, and complex exponential functions are related, it should 
not be a surprise to you that we can combine everyting into two integrals given generically by 
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In our notation specifically written for optics, we obtain 
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This establishes the connection between the aperture function ࣛሺݕሻ	and ܧ൫ ෨݇௒൯.  The aperture 
function and the electric field are Fourier transform pairs.  Physically, what these equations say is 
that the electric field at a point on the screen is made up of a superposition of plane wave of a 
certain amplitude and phase that propagate from the aperture to the observation point.  Likewise, 
from the reversibility of light, the aperture function may be considered to be made up from a 
superposition of plane waves that propagate from points on the observation plane back to the 
aperture.  Notice the difference in signs of the exponent in the two integrals.  Our one-dimensional 
diffraction pattern is nothing more than this superposition of plane waves, a point that we have 
already made numerous times. 
 
To draw an analogy between the time-frequency domains and the space-spatial frequency domains, 
recall that you might have first seen the Fourier transform written as 
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Consider the following aperture function given by 
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Note that this aperture function is an infinite in extent and is a raised cosine function.  To handle 
these types of integrals, we need to introduce the Dirac delta function, a limit of a sequence of 
functions, that is made to deal with singularities produced by points. 
 
Dirca delta functions: 
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One of the most important properties is its sifting property given by 
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Dirac delta functions have the following property. 
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Now we use this property to evaluate our integrals to obtain 
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The diffraction pattern (Fourier transform) of an infinite raised cosine function only has 3 spatial 
frequency components.  We draw ܧ൫ ෨݇௒൯ as 

 
As you might expect, since the function is a pure cosine wave 
shifted upward by 1, it requires only the three components to 
make up the aperture.  Notice that this is not the same as a 
truncated cosine function that might extend from -b/2 to +b/2.  
We would have to do the integrals over much different values 
and delta functions would not be involved.  Can you guess what 
this might look like? 
 

Now let’s look at how a lens behaves in the wave theory of light.  In the geometric optics 
formalism,  a lens simply refracted light and we could determine the connections between the 
object, image, and focal length by involing the object-image matrix. 
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Here is a figure that shows the essential features of a lens 
and what it does in the wave theory model.  We know 
that the collimated light (plane wave) changes into a 
spherical (converging) beam as it produces a point in 
geometric optics.  Now, we know that the finite size of 
the lens causes diffraction, so the image is a diffraction 
pattern.  This process works because the center of the lens 
is thicker and has a larger optical path length than at the 
edges.  We now know that optical path length is 
connected to the phase change given by 
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but we usually limit our imaging to paraxial conditions where ݔ௢ଶ ≪ 1	so ݔ௢ ≅
ఘమ

ଶ௙
.  Therefore, the 

phase change introduced by the lens in the paraxial approximation is given by ߶ ൌ  ௢.  If weݔ݇
now look at a spherical wave incident on the lens, we see exactly how the lens delays the center 
part of the wave and allows the part at the edges to “catch up” to the center part and form an 
outgoing plane (collimated) wave. 
 
Let’s look at an optical system that is known 
as a 4-f system.  Here is a figure that shows 
how the system works.  Let’s  use our raised 
cosine aperture function as the object so we 
can follow what happens.  We know that there 
is one bright spot in the middle and two spots 
that are diminished in size equidistant from it.  
What is the Fourier transform of a Fourier 
transform?  Sometimes, the Fourier transform 
is abbreviated as script F, so we might write 
our expression on the last plane as 
ृሼृሾ݂ሺݕሻሿሽ.  It turns out that the this 
expression can be shown to be given by 
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This means that on the FT of FT plane is the image.  That is, the function f is just inverted and 
multiplied by a constant.  We know that our image should be the same size as our object, so we 
may ignore the constant.  How do we manipulate the diffraction plane to change the image.  Now 
that we have discrete points on the diffraction plane, it is easy to block (filter) out one or more of 
the spots.  This is called spatial frequency filtering and has many very nice uses.  First, consider 
what happens if we block out the two weaker signals.  Then,we have only one central point lying 
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in the fron focal plane of a lens.  What comes out from the first lens?  From geometric optics, we 
would say that we get a collimated beam of light.  In wave optics, we would get the FT of the of 
the delta function ߜ൫ ෨݇௒ െ 0൯, given by 
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What do we expect if we filter out the central spot?  Now we have two point sources, and we 
should obtain Young’s interference.  In equation form, 
 

݁௜௞෨೚௬ ൅ ݁ି௜௞෨೚௬ ൌ 2 cos൫ ෨݇௢ݕ൯. 
 
The figure and explanation on the following page shows an interesting way to look at the full 
picture to connect geometrical optics to wave optics.  Explain how a single lens produces an image. 
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The drawing above illustrates the connection between the geometrical interpretation of image
formation and the wave (Fourier transform) interpretation of image formation.  The object lies in
the front focal plane of lens 1.  The lenses have the same focal length and are separated by twice
the focal length so that the final image is formed in the back focal plane of lens 2.  The drawing
shows three points on the object plane, each with two k-vectors (rays) emanating from it.  The k-
vectors in red are all parallel, and they focus at the point R on the Fourier transform (diffraction)
plane after passing through lens 1.  Three additional k-vectors (shown in green) are emitted in a
different direction from the same three points; these vectors focus at the point G after passing
through lens1.  The points R and G represent the strengths of two different k-vectors that make
up the object.  Each provides partial information about the object, but this information comes
from the entire object.  Fourier transform plane 1 serves as the object plane for lens 2, so Fourier
transform plane 2 is the Fourier transform of the Fourier transform of the object.  Symbolically,
this gives F{F{f(x)}}, where F denotes the Fourier transform, and f(x) is the function that
represents the object.  Now, there are three sets of parallel k-vectors instead of two as before,
two from each of the three points on the original object.  The drawing is scaled properly so that
these vectors are obvious.  Each set of parallel k-vectors focuses on Fourier transform plane 2
and gives the inverted image with the same size as the object here because lens 1 and lens 2 have
the same focal length.  Notice that each set of two parallel k-vectors incident on lens 2 comes
from different points on Fourier transform plane 1, but each set comes from the same point on
the object.  This mixing of incoming parallel k-vectors is what makes the image; it also explains
why the image is the Fourier transform of a Fourier transform and not the inverse Fourier
transform of a Fourier transform.
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