Physics 3312 Lecture 25 April 17,2019

LAST TIME: Fresnel diffraction with rectangular apertures, Fresnel integrals, and Cornu Spiral

Reminder

IZ(po + ro>r” IZ(po + n))l”z

u=y and v =z |———
PoTol PoTol

to obtain

8 . uZ . 2 vz .

Ep = o elk(p0+ro)f gimu?/2 duj eln'vz/z dv.
Z(pO + ro) U, 121

These integrals over U and v are known as the Fresnel integrals. Now we define the following
functions as
W mw'? W w'?
Clw) = J. cos< >dw’ and S(w) = J. sin< >dw’
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Now we may expand all this to obtain
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Carrying out the algebra

Ep = %{[C(uz) +i8(uy) — Cluy) — i Su] X [C(v) +iS(w,) — C(vy) — i S(w)]}

Therefore,
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1. ds = [dX 2 + d¥ 2]02) = 4(u) du = differential arc length
2. Slope = dY/dX = tan[ (u)]; independent of form of #(u)

3. Curvature = K = d¢/ds = [4(w)]'d¢/du
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5. A graph of Y(u) versus X(u) traces a vibration curve with |Z, [
giving the square of the chord length between (X, Y;) and (X2, ¥>)

which, in turn is proportional to the intensity of the diffraction
pattern. u is a parameter that is the rescaled arc length.

One of the most important points to understand from this development is that the arc length along
the spiral is usually constant. As we move our observation point from the center of the observation
plane, the arc length remains constant, but the values of Ui and U2 change as does the chord length
joining the ends of the arc. How do you think we can use the Cornu spiral to obtain Franuhofer
diffraction?

Fourier Optics

Fourier optics is the further study of optics using the formality of Fourier series and the Fourier
transform. Recall that we wrote the diffraction integral as

E(Y) = Cfc/l(y) ek sinf gy with sin @ = g,
Therefore,
B0 = ¢ [ A e™Rdy.
We define

-~ kY
ky = R angular spatial frequency — note dimensions of inverse length

We now write

EY)=C f A(y) e*v¥dy and call E(Y) and ky Fourier transform pairs.

An important distinction is that k and A refer to light and k and A refer to angular spatial frequency

and spatial periods, respectively. Here is an example that shows how these ideas work. We could

2

have a periodic set of pickett fences spaced 10 cm apart so that 1 =10 cm, k = 5 = 0.63 cm™1.
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One of Fourier’s theorems states that a perdiodic function may be written as a series of sines and
cosines given by

A oo oo
fx) = 7°+ Z A,, cosmkx + Z B,, sinmkx .
m=1

m=1

Obviously, this expansion would not do us any good unless we have a way to determine the
coefficients Am and Bm. Fortunately, sines, cosines, and complex exponentials fall into a category
of functions that are known as complete sets of orthogonal functions. As such, they have
conditions that are called orthogonality conditions that allow us to determine Am and Bm. These
conditions are not hard to prove for sines and cosines, but in the interest of time, [ will state what
they are.

2
j sin akx cos bkx dx = 0; j
0 0
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cos akx cos bkx dx = Edab; j sin akx sin bkx dx = >
0

&4p is the Kronecker delta, which is 1 if a = b and 0 if @ # b. Many other functions have
orthogonality conditions that allow for other types of expansions. If we wish to calculate the value
for Am, we just multiply our representation of the function by cos lkx and integrate over the period.
Only values for [ = m contribute so we find

1 1
A

f f(x) cosmkx dx =f A, cos®? mkx dx = EAm

0 0

)
2 A
A, = 1[ f(x) cosmkx dx.
0

We do the same multiplication by the sine function to obtain a value for Bm given by

2 A
B, = If f(x) sinmkx dx.
0

Let’s convert these generic equations into equations that are specific for our case in optics. To do
this we make the following substitutions. Let A - 4,x — y,and k — ky. Therefore, we may write
the following equations given by

A, < -
fly) = 70 + Z A, cosmkyy + Z B, sinmkyy,
m=1 m=1

i i 2
- - A - -
j sinakyy cosbkyy dy =0; f cos akyycos bkyy dy = > Sabs f sinakyy sinbkyy dy
0 0 0

1 2 (% y 2 (7 _
= E(Sab' A, = jf f(y) cosmkyy dy, and B, = ij f(y)sinmkyy dy.
0 0



It is useful to pay attention to whether the function is even or odd because, since the sine is odd

f(y) = —f(—y) and the cosine is even f(y) = f(—y), Bm =0 for even functions and Am = 0 for
odd functions. These follow from the orthogonality conditions. Consider a function that would
simulate the Ronchi ruling we mentioned and saw demonstrated in the video. Its aperture function

would be represented by the following graph.
The width of the peaks is given by 2 % with a

constant period of 1. We may vary the peak
width and period independently of one .
another. The Fourier series is not hard to |

| ;
work out by doing the integrals, and the result _'*; ’
is given by
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Where you will recall the the sinc function is just given by (sin X)/X. We can imagine getting to a
single pulse instead of a periodic set of pulses by stretching out the period and narrowing the pulse.
Here are some figures from Hecht that shows how the process works.
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Because we know how the sine, cosine, and complex exponential functions are related, it should
not be a surprise to you that we can combine everyting into two integrals given generically by

+ o0

flx) = %f F(k)e **dk and F (k) = J‘jmf(x)eikx dx

In our notation specifically written for optics, we obtain
1 + o0 B B _ _ +00 ~
AW) = f E(ky)e v dky and E (ky) = j A(y)ery dy.

This establishes the connection between the aperture function A(y) and E (EY). The aperture
function and the electric field are Fourier transform pairs. Physically, what these equations say is
that the electric field at a point on the screen is made up of a superposition of plane wave of a
certain amplitude and phase that propagate from the aperture to the observation point. Likewise,
from the reversibility of light, the aperture function may be considered to be made up from a
superposition of plane waves that propagate from points on the observation plane back to the
aperture. Notice the difference in signs of the exponent in the two integrals. Our one-dimensional
diffraction pattern is nothing more than this superposition of plane waves, a point that we have
already made numerous times.

To draw an analogy between the time-frequency domains and the space-spatial frequency domains,
recall that you might have first seen the Fourier transform written as

F(w) = f+oof(t)ei“’t dt and f(t) = %erooF(w)e“""t dw.

To illustrate the use of a different aperture function, let’s look at another common aperture
function. Consider an aperture function given by

NS

AG) =cos?? —bo o
y) = cos— SSYS

=0 elsewhere.

Now
+o0o
+b/2 +b/2
= j cosgeﬁ‘ﬁ dy = f l(eiﬂy/b + e—iny/b)eifcyy
SO

_ kyb 1 1
E(ky) = COoS = - =
2 J|\ky+mn/b ky—m/b

Graphs of the electric field amplitude and electric field intensities are shown on the next page.



Electric Field versus ky
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Next, consider the following aperture function given by

A() =1+ cos(k,y)

SO



40
E(ky) = f [1+ cos(k, y)] er?dy

—00

Note that this aperture function is an infinite in extent and is a raised cosine function. To handle
these types of integrals, we need to introduce the Dirac delta function, a limit of a sequence of
functions, that is made to deal with singularities produced by points.

Dirca delta functions:

x*0
x=1

5(x) = {go

and

f_:oé(x)dx =1

One of the most important properties is its sifting property given by
+

f 5(0)f (x)dx = £(0) or f 5(x — x) f()dx = (xo)

— 00

NEXT TIME: Continue with Fourier optics



