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Physics 3312                                                 Lecture 22                                                  April 8, 2019 
 
LAST TIME: Two-dimensional diffraction – rectangular and circular apertures, Bessel functions, 
and resolution 
 
REMINDER: 
 
 
Two-dimensional diffraction 
 
Our diffraction integral now becomes two-
dimensional so, proceeding as before, we see the 
figure to dexcribe this effect as shown to the right.  
Now 
 

ݎ ൌ ሾܺଶ ൅ ሺܻ െ ሻଶݕ ൅ ሺܼ െ  ,ሻଶሿݖ
 
so approximately, 
 

ݎ ൌ ܴሾ1 െ ሺܻݕ ൅  ሻ/ܴଶሿݖܼ
and 

,ሺܻܧ ܼሻ ൌ
ࣟ஺݁ି௜௞ோ

ܴ
න න ࣛሺݕ, ሻݖ

ஶ

ିஶ
݁௜௞ሺ௬௒ା௭௓ሻ/ோ݀ݖ݀ݕ,

ஶ

ିஶ
 

 
 

Make the substitution ߚᇱ ൌ ௞௕௬

ଶோ
	and	ߙᇱ ൌ ௞௔௭

ଶோ
	to obtain 

 

,ሺܻܫ ܼሻ ൌ ሺ0ሻܫ ቆ
sin ᇱߙ

ᇱߙ
ቇ
ଶ

ቆ
sin ᇱߚ

ᇱߚ
ቇ
ଶ

. 

 
Circular apertures are much more interesting and useful because they are the shape of most lenses. 
 
From before, we obtained 

,ሺܻܧ ܼሻ ൌ
ࣟ஺݁ି௜௞ோ

ܴ
න න ሺ1ሻ݁௜௞ሺ௬௒ା௭௓ሻ/ோ݀ݖ݀ݕ

௔
ଶ

ି௔ଶ

.

௕
ଶ

ି௕ଶ

 

 
It makes no sense to try to deal with a circular aperture using Cartesian coordinates, so we change 
to polar coordinates using the following transformations. 
 

ݖ ൌ ߩ cos߶; ݕ		 ൌߩ sin߶ ; 		ܼ ൌ ݍ cosΦ ; 		ܻ ൌ ݍ sinΦ 
 
The area element in polar coordinates is given by dS = ݀ߩ݀ߩ߶.  Therefore, our integral in polar 
coordinates is given by 
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,ݍሺܧ ߶ሻ ൌ
ࣟ஺݁ି௜௞ோ

ܴ
න න ࣛሺ

ଶగ

଴

௔

଴
,ߩ ߶ሻ݁௜ቀ

௞ఘ௤
ோ ቁ ୡ୭ୱሺథି஍ሻ݀ߩ݀ߩ߶. 

 

,ݍሺܧ ߶ሻ ൌ
ࣟ஺݁ି௜௞ோ

ܴ
ሺ2ߨሻܽଶ ൬

ܴ
ݍܽ݇

൰ ଵܬ ൬
ݍܽ݇
ܴ
൰ 

and 

ሻݍሺܫ ൌ ቆ
2ࣟ஺

ଶܣଶ

ܴଶ
ቇ ቈ
ሻܴ/ݍଵሺ݇ܽܬ

ܴ/ݍܽ݇
቉
ଶ

. 

 

ሻߠሺܫ ൌ ሺ0ሻܫ ൤
ଵሺ݇ܽܬ2 sin ߠ
݇ܽ sin ߠ

൨
ଶ

 

 
From the table or graph, we wee that the first zero occurs at 3.83, 

so 
௞௔௤

ோ
ൌ ଶగ௔௤

ఒோ
ൌ 3.83	and	ݍଵ ൌ

ఒோ

ଶ௔
ሺ1.22ሻ.  The very high central peak is know as the Airy disk, 

named after the person who first derived the expression.  On of the most important applications of 
this result occurs when we try to resolve to objects very close together.  If a lens is placed in the 
aperture, then the value for R becomes the focal length f of the lens, and 2a is the diameter of the 
lens.  This means that the radius of the first bright spot is given by  

ଵݍ ൌ 1.22
ߣ݂
ܦ
ൌ
ሺ1.22ሻሺ127	mmሻ633 ൈ 10ି଺mm

25.4	mm
ൌ 4	micrometers 

 
This means that if you filled the lens with the laser beam, the focused spot size would be about 4 
micrometers in radius.  Unfortunately, however, the unexpanded laser beam does not fill the entire 
lens, so if the laser beam is onlyl about 1 mm in diameter, then the radius of the central spot is 
about 100 micrometers.  This example shows the advantage of using large lenses and completely 
filling the aperture with the beam.  It also illustrates why the blue-ray dvds are so useful.  The 
shorter the wavelength, the smaller the radius of the central spot size, all other things being equal. 
 
Resolution 
 
The Rayleigh criterion for resolving two objects is to state that the minimum of one of the 
diffraction patterns just overlaps the maximum of the other object.  The figures for this condition 
and the Sparrow condition are shown below. 
 

 
 
 
 
 
 

 
 

Last time we found that ݍଵ ൌ
ఒோ

ଶ௔
ሺ1.22ሻ	and	with	a	lens, ଵݍ ൌ 1.22 ௙ఒ

஽
. 
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Therefore, we may also use an angular measure as the resolution limit.  Then 
 

ߠ∆ ൌ
ଵݍ
݂
ൌ 1.22

ߣ
ܦ
, 

 
so for a wavelength of 550 nm and a lens or mirror diameter D = 3.5 m, which is the diameter of 
the main adaptive optics telescope at the Starfire Optical Range I mentioned earlier, its diffraction 
limit of Rayleigh resolution is given by 
 

ߠ∆ ൌ
ଵݍ
݂
ൌ 1.22

ߣ
ܦ
ൌ 1.22ቆ

550 ൈ 10ିଽ

3.5
ቇ ൌ 1.92 ൈ 10ି଻	rad. 

 
There are 57.2 degrees/rad, and 3600 arc seconds/degree, so this resolution is about 0.04 arc 
seconds.  This telescope has separated binary stars with a separation of 0.1 arc seconds.  For an 
object 100 miles away or about 160 km =1.6 x 105 m away, the telescope could resolve points on 
the object about 0.03 m or 3 cm apart.  When optical devices are able to have this type of resolution, 
we say that it has diffraction limited resolution. 
 
Circular apertures not in the Fraunhofer limit.  This are said to be 
operating in the near-field limit instead of the far-field limit.  The 
easiest case to discuss is the case of a circular aperture with plane 
wave incident on it, but our observation plane is not in the far-field 
limit.  What this means is that on our observation plane, there is a 
considerable phase difference between waves arriving from different 
points in the circular aperture.  Here is a cross section view of an on-
axis observation point from a circular aperture.  For these situations, 
it turns out to be convenient to break our aperture into regions called 
Fresnel zones.  Rm is the radius of the mth Fresnel zone, and each Fresnel zone boundary marks the 
change in phase by  which is equivalent to a path difference of /2.  Using these conditions, we 
calculate the radius of the mth Fresnel zone as 
 

௢ଶݎ ൅ ܴ௠ଶ ൌ ௠ଶݎ ൌ ൬ݎ௢ ൅
ߣ݉
2
൰
ଶ

ൌ ௢ଶݎ ൅ ߣ௢ݎ݉ ൅
݉ଶߣଶ

4
 

so 
 

ܴ௠ ≅ ඥ݉ݎ௢ߣ	݄ݐ݅ݓ	
݉ଶߣଶ

4
≪ 1. 

 
How do we make use of these ideas?  We have divided the circular aperture into circular zones 
(rings) each of which is on the average pi out of phase with the previous zone.  We know that the 
wave across the aperture is a plane wave, so we can calculate the electric field contribution from 
each zone if we know the area of each zone A.  Therefore, 
 

ܣ ൌ ௠ାଵܣ െ ௠ܣ ൌ ሺܴ௠ାଵߨ
ଶ െ ܴ௠ଶ ሻ ൌ ሺ݉ߨ ൅ 1ሻݎ௢ߣ െ ߣ௢ݎ݉ߨ ൌ  	.ߣ௢ݎߨ
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Let’s remove any aperture and see what the irradiance on the screen is when we have an 
unobstructed wave.  Call that value Eu.  Then, we obtain 
 

௨ܧ ൌ ଵܧ ൅ ଶܧ ൅ ଷܧ ൅ ⋯൅  ௠ܧ
 

ൌ |ଵܧ| െ |ଶܧ| ൅ |ଷܧ| െ |ସܧ| ൅ ⋯േ  |௠ܧ|
 

ൌ
|ଵܧ|

2
൅ ቆ

|ଵܧ|

2
െ |ଶܧ| ൅

|ଷܧ|

2
ቇ ൅ ⋯൅ ቆ

|௠ିଶܧ|

2
െ |௠ିଵܧ| ൅

|௠ܧ|

2
ቇ േ

|௠ܧ|

2
. 

 
Each of the terms in parenthesis gives approximately zero, so  
 

௨ܧ ൌ
|ଵܧ|

2
േ
|௠ܧ|

2
. 

Once m becomes very large, the obliquity factor begins to reduce its value, so we may neglect the 
last term in the sum above.  Therefore, 

௨ܧ ൌ
ଵܧ
2
, 

 
And this leads to the somewhat surprising 
and counter-intuitive result that the 
irradiance with only one zone inside the 
aperture is given by ܧଵ ൌ ଵܫ	ݎ݋	௨ܧ2 ൌ   .௨ܫ4
This means that placing an aperture with 
only one Fresnel zone gives an irradiance of 
4 times the unobstructed wave!!!  A rather 
strange result.  Here is a phasor diagram of 
how this works.  The right and left halves of 
these semicircles represent the odd and even 
zone contributions, respectively, as m 
increases.  As you can see from this figure, 
the amplitude of the unobstructed wave is ½ 
the amplitude of the first zone contribution.  The figure to the far right is the discrete version of 
the continuous curve.  Let’s see what happens when we have adjusted our parameters so that only 
1 zone appears in the aperture.  Then 
 

ܴଵ ≅ ඥݎ௢ߣ ൌ  ,ܦ
 
where D is the diameter of the aperture.  This means that ܦଶ ൌ  but recall that our condition	,ߣ௢ݎ
for Fraunhofer diffraction was given by 

ߣ ≫
ܾଶ

ܴ
. 

 
Here, however, b = D and R =ro, so what the Fraunhofer condition really means is that the radius 
of the first Fresnel zone is much larger that the radius of the aperture and only a small fraction of 
the first zone is inside the aperture.  Therefore, the phase change across the aperture is nearly zero, 
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which means the wave is very much like a plane wave, exactly our condition for Fraunhofer 
diffraction!!!  As we move closer to the aperture, we start to see parts of the second zone, so the 
intensity decreases until when the second zone is in the aperture, the intensity becomes nearly zero.  
Moving even closer, we bring in the third zone to get another maximum, and so forth.  We may 
also bring in additional zones by leaving the observation distance fixed and increasing the aperture 
size.  Here is a figure from your textbook showing the changes in the pattern as the number of 
zones increases. 

 
 
 
 
 
 
 
 
 

What happens if we have spherical waves incident on an aperture?  
The basic difference is that the nature of the zones changes.  Here 
is the figure to represent this case. 
 

௠ଶߩ ൌ ௢ଶߩ ൅ ܴ௠ଶ ௠ଶݎ	݀݊ܽ		 ൌ ௢ଶݎ ൅ ܴ௠ଶ  
 
To get the half-period zones, we use the equation given by 
 

ሺߩ௠ ൅ ௠ሻݎ െ	ሺߩ௢ ൅ ௢ሻݎ ൌ
ߣ݉
2
. 

 
Now we need to make the approximation that ܴ௠ ≪  ௢ so that we may writeݎ	and	௢ߩ
 

௠ߩ ൌ ඥሺߩ௢ଶ ൅ ܴ௠ଶ ሻ ≅ ௢ߩ ൅
ܴ௠ଶ

௢ߩ2
 

and 

௠ݎ ൌ ඥሺݎ௢ଶ ൅ ܴ௠ଶ ሻ ≅ ௢ݎ ൅
ܴ௠ଶ

௢ݎ2
. 

 
We substitute each of these values into the equation above to obtain 
 

௢ߩ ൅
ܴ௠ଶ

௢ߩ2
൅ ௢ݎ ൅

ܴ௠ଶ

௢ݎ2
െ ሺߩ௢ ൅ ௢ሻݎ ൌ

ߣ݉
2
, 

which implies that 
ܴ௠ଶ

௢ߩ
൅
ܴ௠ଶ

௢ݎ
ൌ 		ݎ݋		ߣ݉	

1
௢ߩ
൅
1
௢ݎ
ൌ
ߣ݉
ܴ௠ଶ

. 

 
The physics here is the same, and calculating the area of each zone proceeds in the same way.  It 
turns out that the area of eahc zone is given by 
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ܣ ൌ ൬
௢ߩ

௢ߩ ൅ ௢ݎ
൰  .ߣ௢ݎߨ

 
We can obtain the approximate number of zones inside an aperture by divding the area of the 
aperture by the area of each zone, so the numbe of zones in an aperture is just given by 
 

ݏ݁݊݋ݖܰ ൌ
ଶܴߨ

ቀ
௢ߩ

௢ߩ ൅ ௢ݎ
ቁ ߣ௢ݎߨ

ൌ
ሺߩ௢ ൅ ௢ሻܴଶݎ

ߣ௢ݎ௢ߩ
. 

 
Once again, an even number of zones results in a minimum at the center of the pattern, whereas 
an odd number of zones results in a maximum irradiance at the center of the pattern.  Off-axis 
irradiances are more complicated, so in the interest of covering other material, I will defer that 
until later if we get to it. 
 
Comments on barriers. 
 
The geometry for considering a rectangular aperture is the same as for a circular aperture, but you 
can see that attempting to do the problem in the same way leads to difficulties because our zones 
do not fit perfectly into rectangular apertures.  This will lead us to going back to the diffraction 
integral and making some approximations that include additional terms that we neglected for 
Fraunhofer diffraction.  This will be our main subject Wednesday. 
 
Videos 30 and 25 
 
NEXT TIME: Fresnel diffraction by rectangular apertures. 


