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Physics 3312                                                Lecture 15                                                 March 6, 2019 
 
LAST TIME: More on Jones vectors and matrices, applications 
 
Generalized Jones vector 

൤
௢௫ܧ

௢௬݁௜ఢܧ
൨ 

 

ቂ ܣ
ܤ ൅ ܥ݅

ቃ ൌ ቈ
ܣ

ቀඥܤଶ ൅ ଶቁܥ ݁௜ఢ቉ ൌ ቈ
ܣ

ቀඥܤଶ ൅ ଶቁܥ ݁௜	୲ୟ୬
షభሺ஼/஻ሻ቉. 

Therefore, 

௢௫ܧ ൌ ௢௬ܧ	;ܣ ൌ ඥܤଶ ൅ ;ଶܥ and	߳ ൌ tanିଵሺܤ/ܥሻ 
 
LP states: ܧ௢௫	ݎ݋	ܧ௢௬ ൌ 0; 		߳ ൌ േ2݊ߨ; 		߳ ൌ േሺ2݊ ൅ 1ሻߨ 
 
CP states: ߳ ൌ ൅గ

ଶ
௢௫ܧ			; ൌ ௢௬ܧ ൌ  ݓܿܿ	ܲܥܮ					௢ܧ

߳ ൌ െగ

ଶ
௢௫ܧ			; ൌ ௢௬ܧ ൌ   ݓܿ	ܲܥܴ					௢ܧ

 
EP states: ߳ ൌ ൅గ

ଶ
௢௫ܧ			; ് ௢௬ܧ ് 	axes	ݓܿܿ	ܲܧܮ					0 ∥ coordinate	axes. 

߳ ൌ െ
ߨ
2
௢௫ܧ			; ് ௢௬ܧ ് 	axes	ݓܿ	ܲܧܴ					0 ∥ coordinate	axes 

߳ arbitrary, ܧ௢௫&	ܧ௢௬ ് 0; 		elliptical	with	axes	not	parallel	to	coordinate	axes					 
 
Applications of some of the ideas we have discussed concerning polarization 
 
Fresnel Rhomb 
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Let’s check to see that if we have a phase shift of 45 degrees with Eox = Eoy, the light is elliptically 
polarized with the major axis at 45 degrees. 

tan ߙ2 ൌ
௢௬ܧ௢௫ܧ2 cos ߳
௢௫ଶܧ െ ௢௬ଶܧ

. 

 
Notice that no matter what the phase difference is, as long as Eox = Eoy, the ellipse axes will be a 
45 degrees.  So what is the difference in how the ellipse looks for different phase differences?  To 
see this, go back to the polarization ellipse with ߳ ൌ 45	degrees to obtain 
 

ቆ
௬ܧ
௢௬ܧ

ቇ
ଶ

െ 2
௬ܧ௫ܧ
௢௬ܧ௢௫ܧ

cos ߳ ൅ ൬
௫ܧ
௢௫ܧ

൰
ଶ

ൌ sinଶ ߳. 

Then 

൬
௬ܧ
௢ܧ
൰
ଶ

െ 2
௬ܧ௫ܧ
௢ଶܧ

√2
2
൅ ൬

௫ܧ
௢ܧ
൰
ଶ

ൌ
1
2

 

and 

௬ܧ௫ܧ௫ଶെ√2ܧ ൅ ௬ଶܧ ൌ
௢ଶܧ

2
. 

Recall 
ଶݔܣ ൅ ݕݔܤ ൅ ଶݕܥ ൅ ݔܦ ൅ ݕܧ ൅ ܨ ൌ 0	with	ܦ ൌ ܧ ൌ 0	here. 

 
It is tedious, but not terribly difficult, to show that in the rotated frame of the ellipse, we obtain 
 

ଶ′ݔᇱܣ ൅ ଶ′ݕᇱܥ ൅ ᇱܨ ൌ 0 
with 

ᇱܣ ൌ ܣ cosଶ ߙ ൅ ܤ sinߙ cos ߙ ൅ ܥ sinଶ  ,ߙ
 

ᇱܥ ൌ ܣ sinଶ ߙ െ ܤ sinߙ cos ߙ ൅ ܥ cosଶ ,ߙ and	ܨᇱ ൌ  .ܨ
For this example, 

ᇱܣ ൌ
1
2
െ
√2
2
൅
1
2
ൌ 1 െ

√2
2
		and	ܥᇱ ൌ

1
2
൅
√2
2
൅
1
2
ൌ 1 ൅

√2
2
. 

 
If we had left ߳ as a parameter, we see that it would be the determining factor in the values for A' 
and C' in the rotated coordinae system.  I have shown this because it is important in determining 
what the rotated ellipse loos like.  The more general polarization ellipse may be written as 
 

ቆ
௬ܧ
௢௬ܧ

ቇ
ଶ

െ 2
௬ܧ௫ܧ
௢௬ܧ௢௫ܧ

cos ߳ ൅ ൬
௫ܧ
௢௫ܧ

൰
ଶ

ൌ sinଶ ߳. 

so that 
௫ଶܧ െ ௬ܧ௫ܧ2 cos ߳ ൅ ௬ଶܧ ൌ ௢ଶܧ sinଶ ߳. 

 
Here, ܣ ൌ 1, ܥ ൌ 1, ܤ ൌ െ2 cos ߳ , and	ܨ ൌ െܧ௢ଶ sinଶ ߳.  Use the transformations above to obtain 
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ᇱܣ ൌ
1
2
൅ ሺെ2 cos ߳ሻ ቆ

√2
2
ቇ

ଶ

൅
1
2
ൌ 1 െ cos ߳ 

and 

ᇱܥ ൌ
1
2
െ ሺെ2 cos ߳ሻ ቆ

√2
2
ቇ

ଶ

൅
1
2
ൌ 1 ൅ cos ߳. 

 
Therefore, in the rotated coordinate system, the equation of the ellipse is given by 
 

ሺ1 ൅ cos ߳ሻܧ′௫ଶ ൅ ሺ1 െ cos ߳ሻܧ′௬ଶ ൌ ௢ଶܧ sinଶ ߳. 
 
In a more standard form, 

௫ᇱܧ
ଶ

൬
௢ଶܧ sinଶ ߳
1 ൅ cos ߳൰

൅
௬ᇱܧ

ଶ

൬
௢ଶܧ sinଶ ߳
1 െ cos ߳൰

ൌ 1. 

Finally, 

ܽ ൌ ඨቆ
௢ଶܧ sinଶ ߳
1 ൅ cos ߳

ቇ 		and		ܾ ൌ ඨቆ
௢ଶܧ sinଶ ߳
1 െ cos ߳

ቇ 

 
This all means that the phase difference between the two components determines the length of the 
major and minor axes in the rotated ellipse.  Notice that when ߳ ൌ 90	degrees,	a and b are equal, 
and we get a circle as expected. 
 
Let’s now have a look at another device that is very convenient in analyzing polarized light, 
specifically ellipsometry.  The figures below show a Soleil-Babinet compensator. 

 
 
The phase difference between the electric fields in the incident wave is given by 
 

߳ ൌ
ߨ2
௢ߣ

ሺ݀ଵ െ ݀ଶሻ|݊௘ െ ݊௢|, 

 
Where d1 is the total thickness of the wedge and d2 is the thickness of the fixed plate. 
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Analysis of Polarized Light 
 

A. No Intensity Variation with Analyzer Alone 
 

NOTE: QWP = Quarter Wave Plate 
 

I. If with QWP in front of 
analyzer 

II. If with QWP in front of analyzer one finds a 
maximum, then 

1. One has no intensity 
variation, 

 
 

one has 
 

natural unpolarized light 

2. If one position of 
analyzer gives zero 

intensity, 
 

one has 
 

circularly polarized light 

3. If no position of 
analyzer gives zero 

intensity, 
 
 

one has 
 

a mixture of circularly 
polarized light and 
unpolarized light 

 
 

B. Intensity Variation with Analyzer Alone 
 

I. If one position of 
the analyzer gives 

II. If no position of the analyzer gives zero intensity 

1. Zero intensity, 2. Insert a QWP in front of analyzer with optic axis parallel to 
the position of maximum intensity 

 
 
 

(a) If one gets zero 
intensity with 

analyzer, 

(b) If one gets no zero intensity, 

 
 

one has 
 
 
 
 

linearly polarized 
light 

 
 
 
 

one has 
 
 

elliptically 
polarized light 

(1) but the same 
analyzer setting as 
before gives the 

maximum intensity, 
 

one has 
 

mixture of linearly 
polarized light and 
unpolarized light 

(2) but some other 
analyzer setting 

than before gives a 
maximum intensity,

 
one has 

 
mixture of 
elliptically 

polarized light and 
linearly polarized 

light 
 

 
 
 



5 
 

Interference classification 
 
Amplitude division                                                         Wavefront division 
 
Two – wave (Michelson interferometer)                       Two wave (Young’s 2-slit interference) 
Multiwave (Fabry-Perot interferometer)                       Multiwave (Multiple slit interference) 
 
Two observe interference, the waves that are being added must have some degree of coherence. 
Waves are said to be coherent when they maintain a definite phase relationship between them.  The 
distance over which this coherence is maintained is called the coherence length.  As long as some 
degree of coherence is maintained, you should be able to observe interference.  We can see this 
better if we think of light being produced by electronic transitions in the atom, each producing a 
wave packet having a length Lc = c t = 3 × 108 × 10-9 m ≈ 30 cm.  It is not hard to prove that, in 
terms of the wavelength, the coherence length is given by 
 

Δܮ௖ ≅
௢ଶߣ

Δߣ
. 

 
We begin by adding two waves having the same frequency with a relative phase of ߳.		The two 
waves are given by 

۳ଵ ൌ ۳௢ଵ݁௜ሺ௞௥భିఠ௧ሻ 
and 

۳ଶ ൌ ۳௢ଶ݁௜ሺ௞௥భିఠ௧ାఢሻ. 
Therefore, the total field is given by 
 

۳ ൌ ۳ଵ ൅ ۳ଶ ൌ ۳௢ଵ݁௜ሺ௞௥భିఠ௧ሻ ൅ ۳௢ଶ݁௜ሺ௞௥భିఠ௧ାఢሻ. 
One very big advantage in working with the exponential form of the electric field is that iit is not 
hard to prove that the irradiance I is given by 
 

ܫ ൌ
1
2
ܴ݁ሺ۳ ∙ ۳∗ሻ, which	comes	from	〈fg〉 ൌ

1
2
ܴ݁ሺ݂݃∗ሻ 

Therefore, 

ܫ ൌ
1
2
ܴ݁ሼ۳௢ଵ݁௜

ሺ௞௥భିఠ௧ሻ ∙ ۳௢ଵ݁ି௜
ሺ௞௥భିఠ௧ሻ ൅ ۳௢ଵ݁௜

ሺ௞௥భିఠ௧ሻ ∙ ۳௢ଶ݁ି௜
ሺ௞௥భିఠ௧ାఢሻ ൅ 

൅۳௢ଵ݁ି௜
ሺ௞௥భିఠ௧ሻ ∙ ۳௢ଶ݁௜

ሺ௞௥భିఠ௧ାఢሻ ൅ ۳௢ଶ݁௜
ሺ௞௥భିఠ௧ାఢሻ ∙ ۳௢ଶ݁௜

ሺ௞௥భିఠ௧ାఢሻሽ 
 
The first thing to notice is that the fields must have some parallel components or the cross terms 
will vanish leaving us with only 

ܫ ൌ
1
2
ܴ݁ሺܧ௢ଵ

ଶ ൅ ௢ଶܧ
ଶ ሻ, 

 
which is just I1 + I2.  It is customary to assume that the two fields are parallel so we obtain 
 

ܫ ൌ
1
2
ܴ݁൫ܧ௢ଵ

ଶ ൅ ௢ଶܧ
ଶ ൅ ௢ଶ݁௜௞ሺ௥భି௥మାఢሻܧ௢ଵܧ ൅  .௢ଶ݁ି௜௞ሺ௥భି௥మାఢሻ൯ܧ௢ଵܧ

Finally, 
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ܫ ൌ
1
2
ܴ݁ሼܧ௢ଵ

ଶ ൅ ௢ଶܧ
ଶ ൅ ௢ଶܧ௢ଵܧ2 cosሾ݇ሺݎଵ െ ଶሻݎ ൅ ߳ሿሽ 

 
ܫ ൌ ଵܫ ൅ ଶܫ ൅ 2ඥܫଵܫଶ cosሾ݇ሺݎଵ െ ଶሻݎ ൅ ߳ሿ. 

 
The total phase difference breaks up neatly into two components, the phase difference due to the 
optical path difference ሾ݇ሺݎଵ െ  which comes from the inherent	ଶሻሿ and the remaining phase ߳,ݎ
phase difference + the phase differences due to reflections.  I believe this is the most effective way 
to consider phase in interference problems.  Usually, in optics, an inherent phase difference is 
difficult to build in, but in electronically controlled devices, it is relatively easy to do.  We call the 
total phase difference ߜ ൌ ை௉஽ߜ ൅ ௜௡ߜ ൅  :௥௘௙.  We note the followingߜ
 

௠௔௫ܫ ൌ ଵܫ ൅ ଶܫ ൅ 2ඥܫଵܫଶ; ߜ		 ൌ 0,േ2ߨ,⋯േ  ߨ2݊
and 

௠௜௡ܫ ൌ ଵܫ ൅ ଶܫ െ 2ඥܫଵܫଶ; ߜ		 ൌ േߨ,⋯േ ሺ2݊ ൅ 1ሻߨ 
 
The fringe visibility is defined to be 
 

ܸ ൌ
௠௔௫ܫ െ ௠௜௡ܫ

௠௔௫ܫ ൅ ௠௜௡ܫ
ൌ
2ඥܫଵܫଶ
ଵܫ ൅ ଶܫ

	,	 

so 
ܸ ൌ 1 

if 
ଵܫ ൌ ଶܫ ൌ  .௢ܫ

 
After spring break, we look at examples. 
 
NEXT TIME: Examples of interference and interferometers 


