Physics 3312 Lecture 15

LAST TIME: More on Jones vectors and matrices, applications
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[B f iC] = l(\/WACZ) eifl = [(\/mjleitan‘l(cﬂa)l.

E,x = A; E,, =+/B? + (% and € = tan"*(C/B)

Generalized Jones vector

Therefore,

LP states: E,, or E,, = 0; € = £2nm; e = £(2n+ D

CP states: € = +§; Eox = Eoy = E, LCP ccw
€= —g; Epy =Eoy =E, RCPcw

EP states: € = +E; E,, #E,, #0 LEP ccw axes || coordinate axes.
2 ox oy

s
€= _E; Eox # E;y # 0 REP cw axes || coordinate axes

€ arbitrary, E,,& E,,, # 0; elliptical with axes not parallel to coordinate axes

Applications of some of the ideas we have discussed concerning polarization
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Phase Advance at Internal Reflection

p component (6_p, red); s component (§_s, blue);
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Let’s check to see that if we have a phase shift of 45 degrees with Eox = Eoy, the light is elliptically
polarized with the major axis at 45 degrees.
2E,xE,, cos€

tan2a =

an2a E2, - 3,

Notice that no matter what the phase difference is, as long as Eox = Eoy, the ellipse axes will be a

45 degrees. So what is the difference in how the ellipse looks for different phase differences? To
see this, go back to the polarization ellipse with € = 45 degrees to obtain

2 2
E E. E E
(—y> 2—2Y cose+ <E_x> = sin? €.

Eoy onEoy ox
Then
@) -5 @) 3
E, EZ 2 E, 2
and
2_\[2 2 EOZ
Ex—V2EE, + E; = >
Recall

Ax? + Bxy + Cy? + Dx + Ey + F = 0 with D = E = 0 here.
It is tedious, but not terribly difficult, to show that in the rotated frame of the ellipse, we obtain

AX?*+Cy*+F =0
with
A' = Acos?a + Bsinacosa + C sin? a,

C' = Asin®a — Bsinacosa + Ccos?a,and F' = F.

o1 V21 V2 1 W2
A —5—74‘5—1—7 and C —§+7

For this example,

+1—1+\/7
2 2

If we had left € as a parameter, we see that it would be the determining factor in the values for A’
and C' in the rotated coordinae system. I have shown this because it is important in determining
what the rotated ellipse loos like. The more general polarization ellipse may be written as

2 2
E E E E
(—y> —2—2Y cose+ (E—x) = sin?e.

Eoy onEoy ox
so that
E} — 2E(E, cose + E} = EZ sin”e.
Here, A=1,C = 1,B = —2cose€,and F = —E? sin? . Use the transformations above to obtain



2
1 V2\© 1
A —§+(—2cose)<7> +§—1—cose
and
2
1 V2 1
"'=—— (-2 — -=1 .
C > ( cose)<2> +3 + cose

Therefore, in the rotated coordinate system, the equation of the ellipse is given by
(1+cose)E'Z + (1 —cos€)E" = Ef sin®e.

In a more standard form,
E/ 2 El 2

EZ2sin? e ) E? sm2
1+cose 1—cose

EZsin? e EZsin? e
a= ——— ) and b = _—
1+ cose 1—cose

This all means that the phase difference between the two components determines the length of the
major and minor axes in the rotated ellipse. Notice that when € = 90 degrees, a and b are equal,
and we get a circle as expected.

Finally,

Let’s now have a look at another device that is very convenient in analyzing polarized light,
specifically ellipsometry. The figures below show a Soleil-Babinet compensator.

Beam Propagation Direction

Top Wedge
Adjustment

W

The phase difference between the electric fields in the incident wave is given by
/[
€= )L_(dl - dz)lne - nol:
(o]

Where d1 is the total thickness of the wedge and d: is the thickness of the fixed plate.
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Analysis of Polarized Light

A. No Intensity Variation with Analyzer Alone

NOTE: QWP = Quarter Wave Plate

I. If with QWP in front of

II. If with QWP in front of analyzer one finds a

analyzer maximum, then
1. One has no intensity 2. If one position of 3. If no position of
variation, analyzer gives zero analyzer gives zero
intensity, intensity,
one has one has
one has

natural unpolarized light

circularly polarized light

a mixture of circularly
polarized light and
unpolarized light

B. Intensity Variation with Analyzer Alone

I. If one position of
the analyzer gives

II. If no position of the analyzer gives zero intensity

1. Zero intensity,

2. Insert a QWP in front of analyzer with optic axis parallel to

the position of maximum intensity

(a) If one gets zero (b) If one gets no zero intensity,
intensity with
analyzer,
(1) but the same (2) but some other
analyzer setting as analyzer setting
one has before gives the than before gives a
maximum intensity, | maximum intensity,
one has
one has one has
linearly polarized elliptically mixture of linearly mixture of
light polarized light polarized light and elliptically
unpolarized light | polarized light and
linearly polarized
light




Interference classification

Amplitude division Wavefront division
Two — wave (Michelson interferometer) Two wave (Young’s 2-slit interference)
Multiwave (Fabry-Perot interferometer) Multiwave (Multiple slit interference)

Two observe interference, the waves that are being added must have some degree of coherence.
Waves are said to be coherent when they maintain a definite phase relationship between them. The
distance over which this coherence is maintained is called the coherence length. As long as some
degree of coherence is maintained, you should be able to observe interference. We can see this
better if we think of light being produced by electronic transitions in the atom, each producing a
wave packet having a length ALc = ¢ At=3 x 10% x 10 m = 30 cm. It is not hard to prove that, in
terms of the wavelength, the coherence length is given by

2
~ 0
AL =35

We begin by adding two waves having the same frequency with a relative phase of €. The two
waves are given by
E1 — Eolei(krl—wt)
and
EZ — Eozei(krl_wt+e).

Therefore, the total field is given by

E = E1 + EZ — Eolei(k‘r'l—a)t) + Eozei(krl_w“-e).
One very big advantage in working with the exponential form of the electric field is that iit is not
hard to prove that the irradiance | is given by

1

1
I = = Re(E - E*), which comes from (fg) = >

> Re(fg")

Therefore,
] = lRe{Eolei(krl—(ut) . Eole—i(krl—wt) + Eolei(krl—wt) . Eoze—i(krl—a)He) +
2

+Eole—i(k7‘1—wt) . Eozei(krl—wt+e) + Eozei(krl—wHe) . Eozei(krl—wt+e)}

The first thing to notice is that the fields must have some parallel components or the cross terms
will vanish leaving us with only

1
I= ERe(Eél +E3),

which is just I1 + I2. It is customary to assume that the two fields are parallel so we obtain

1 , ,
I = ERe(E§1 + Egz + EolEozelk(rl—r2+e) + EolEoze—Lk(rl—r2+e))_
Finally,



1
[ = ERe{Eg1 + EZ, + 2E,,E,, cos[k(r; — 1) + €]}

I :II +12 +2 1112 COS[k(T‘1 —T2)+6].

The total phase difference breaks up neatly into two components, the phase difference due to the
optical path difference [k(r; — ;)] and the remaining phase €, which comes from the inherent
phase difference + the phase differences due to reflections. I believe this is the most effective way
to consider phase in interference problems. Usually, in optics, an inherent phase difference is
difficult to build in, but in electronically controlled devices, it is relatively easy to do. We call the
total phase difference § = 6ppp + ;5 + 6rcr. We note the following:

Imax =1L + 1, +2I11;; § =0,%+2m, -+ 2nm
and
Ijin =1 + 1, —2{l11; 6§ =4m, -+ (2n+ L)m

The fringe visibility is defined to be

Lnax = Imin _ 2\/ L1,

V= = ,
Imax + Imin 11 + 12

SO

if

After spring break, we look at examples.

NEXT TIME: Examples of interference and interferometers



