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Physics 3312                                             Lecture 12                                              February 25, 2019 
 
Lecture 11 was examination 1. 
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Boundary conditions, Fresnel equations (coefficients) 
 
Recall that using the electromagnetic approach, we recovered Snell’s law, but we also now know 
how much light is reflected and how much is transmitted as a function of the angles and indices of 
refraction.  The polarizing angle for the electric field parallel to the plane of incidence was also 
something new because geometrical optics cannot consider polarization. 
 
Now we want to extend our discussion to include not only the 
amplitude coefficients but also the energy transmitted across the 
boundary because that is what our detectors measure.  Our 
equations are written first for the case of perfect dielectrics – no 
absorption.  We are interested in the energy flow per unit time 
across a unit area.  The following figure shows a two-dimensional 
version of how things look at a boundary.  The area A is the area 
at the surface, and each of the areas shown are given by 
 

௜ܣ ൌ ܣ cos ௜ߠ ; ௥ܣ					 ൌ ܣ cos ௥ߠ ௧ܣ					; ൌ ܣ cos  .௧ߠ
 
Therefore, the power in each of the beams is given by 
 

௜ܲ ൌ ܣ௜ܫ cos ௜ߠ ; 					 ௥ܲ ൌ ܣ௥ܫ cos ௥ߠ ;					 ௧ܲ ൌ ܣ௧ܫ cos  .௧ߠ
 
The reflectance is defined as the ratio of the reflected power to the incident power, so 
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The transmittance, however, looks a bit different because the two waves are not in the same 
medium and do not have the same area.  The result for the transmittance is given by 
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Now we can understand why the transmittance is not just equal to the transmission coefficient 
squared.  The indices of refraction are present because they are indicators of the speed at which 
energy is transmitted.  The cosines are present because the areas of the incident beam and the 
transmitted beam are different.  With no absorption, the energy flow into and out of the surface 
must be equal.  This conservation of energy results in 
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ܣ௜ܫ cos ௜ߠ ൌ ܣ௥ܫ cos ௥ߠ ൅ ܣ௧ܫ cos  .௧ߠ
 
We divide through by the left-hand side to obtain 
 

1 ൌ ܴ ൅ ܶ. 
 
This is the conservation of energy when no absorption is present.  When absorption is present, we 
would expect to find 

ܴ ൅ ܶ ൅ ܣ ൌ 1. 
 
One of the common ways to measure absorption is to measure 
the transmittance and reflectance and use ܣ ൌ 1 െ ሺܴ ൅ ܶሻ.  
Here are some graphs that show transmittance and reflectance 
for both the electric field perpendicular and parallel to the 
plane of incidence.  These are for external reflections.  You 
can see the effect at the polarizing angle where the reflectance 
becomes zero and the transmittance becomes one.  Because 
we know the general expressions for the reflectance and 
transmittance, we may use either ୄݎ , ,ୄݐ	 ,∥ݎ  to get the	∥ݐ	ݎ݋
corresponding expression for T or R.  For normal incidence 
on glass with the index of refraction 1.5, we see that the 
reflectance is given by 

ܴ ൌ ଶݎ ൌ ൬
݊௜ െ ݊௧
݊௜ ൅ ݊௧

൰
ଶ

ൌ 0.04. 

 
The one-way glass you sometimes see is accomplished by 
coating a thin layer of metal on glass to create a situation 
where the reflectance and transmittance are about equal.  One 
side is kept darker than the other side, so the persons on the 
dark side can see the persons on the bright side, but the persons 
on the bright side cannot see the persons on the dark side 
because their reflection is much brighter than the transmitted 
light from the dark side.  The figure to the right shows the 
reflectance, transmittance, and absorbance as a function of the aluminum film thickness on BK7 
glass. 
 
Polarization 
 
An electromagnetic wave is said to be polarized if the electric field vector has a well-defined and 
unchanging path.  The easiest way to visual polarized light is to consider the behavior of the electric 
field when we imagine we look at how the electric field behaves in time at a fixed location in 
space.  Under these conditions, the electric field vector should trace out a repeatable path, usually 
a line, circle, or an ellipse depending on how the wave is polarized.  Because the electric field is a 
vector, it is possible to create the total electric field by superposing (adding) two electric field 
vectors with the appropriate amplitude and phase. 



3 
 

Before we start a discussion of general polarization, we should comment on what is meant by light 
that is not polarized.  Light that does not satisfy our definition of polarized light is said to be 
unpolarized, randomly polarized, or simply natural light.  The electric field in this type of light is 
randomly distributed.  You could not trace out a predictable path of the electric field if you looked 
at its time dependence in a specific plane. 
 
Let’s look at the superposition of two electromagnetic waves 
whose amplitudes and phase difference can be varied.  We take 
the propagation direction to be along the positive z direction, so 
our fields will lie in the x-y plane as shown.  It is important to 
understand that the two fields may not reach their maximum 
values at the same time, so there is a phase difference between the 
two fields.  The components of the two fields are given by 
 

௫ܧ ൌ ௢௫ܧ cosሺ݇ݖ െ ሻݐ߱ 	and	ܧ௬ ൌ ௢௬ܧ cosሺ݇ݖ െ ݐ߱ ൅ ߳ሻ, 
 
where ߳	is the phase difference between the two fields.  In vector notation, the total field is given 
by 

۳ሺݖ, ሻݐ ൌ ,ݖ௫ሺܧ ොܠሻݐ ൅ ,ݖ௬ሺܧ ෝ.ܡሻݐ  
 
We will eliminate the t from our equations so we can see what the spatial path looks like.  To do 
that, we expand the cosine function in ܧ௬	to obtain 
 

௬ܧ ൌ ݖ௢௬ሾcosሺ݇ܧ െ ሻݐ߱ cos ߳ െ sinሺ݇ݖ െ ሻݐ߱ sin ߳ሿ 
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Therefore, 
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Finally, 
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You may remember that the general equation for a rotated and translated conic section (circle, 
ellipse, or hyperbola) is given by 
 

ଶݔܣ ൅ ݕݔܤ ൅ ଶݕܥ ൅ ݔܦ ൅ ݕܧ ൅ ܨ ൌ 0. 
 
Here, ܧ௫	and	ܧ௬ play the role of x and y, and D = E = 0.  We wish to investigate the path the 
electric field traces out in a section where z = constant when we allow ܧ௢௫, ,௢௬ܧ and	߳	to vary. 
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Case 1: ߳ ൌ 0,േ2ߨ,േ4ߨ,  .௢௬ arbitraryܧ	and	௢௫ܧ  .ܿݐ݁
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This case results in linearly polarized light with the electric field making an angle of 
 

ߠ ൌ tanିଵ
௢௬ܧ
௢௫ܧ

. 

 
Should ܧ௢௫	or	ܧ௢௬ be zero, then the LP state is along one of the coordinate axis. 
 
߳ ൌ േߨ,േ3ߨ,  .௢௬ arbitraryܧ	and	௢௫ܧ  .ܿݐ݁
 

ቆ
௬ܧ
௢௬ܧ

൅
௫ܧ
௢௫ܧ

ቇ
ଶ

ൌ 0	 ⟹ ௬ܧ ൌ െ൬
௢௬ܧ
௢௫ܧ

൰  ௫ܧ

 
This is still an LP state with E anti parallel to the earlier state. 
 
Case 2: ߳ ൌ േ2/ߨ with ܧ௢௫ ൌ ௢௬ܧ ൌ  ௢ܧ
 
 

ቆ
௬ܧ
௢௬ܧ

ቇ
ଶ

൅ ൬
௫ܧ
௢௫ܧ

൰
ଶ

ൌ 1 ⟹ ௫ଶܧ ൅ ௬ଶܧ ൌ ଴ܧ
ଶ. 

 
We have the equation of a circle in either case, but there is a difference that we can see if we make 
a plot in time of how the electric field behaves.  At z = 0, how does the electric field rotate?  Here 
are three figures at different t times to see what happens.  ܧ௫ ൌ ௢ܧ cosሺെ߱ݐሻ 	and	 
௬ܧ ൌ ௢ܧ cosሺെ߱ݐ ൅   .2ሻ/ߨ

With ߳ ൌ 	൅2/ߨ, the electric field rotates ccw 
at a fixed position in space.  This is said to be 
left circularly polarized light (LCP).  You can 
also show that if ߳ ൌ 	െ గ

ଶ
, the electric field 

rotates cw at a fixed position in space.  This 
case is said to be right circularly polarized light 
(RCP).  In optics, we agree to look back toward 
the source to determine the handedness.  This is 

not true in all disciplines. 
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Case 3: ߳ ൌ ൅గ

ଶ
	with ܧ௢௫ ് ௢௬ܧ ് 0 

This results in our equation becoming 
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which is the equation of an ellipse with the major and minor axes aligned with the coordinate axes.  
Finally, if everything is arbitrary but not zero, we get the most general equation for an ellipse with 
the major and minor axes rotated with respect to the coordinate axes.  The equation is given by 
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which is our most general equation.  The angle the ellipse axes make with respect ot the coordinate 
axes is given by 

ߙ2 ൌ tanିଵ
௢௬ܧ௢௫ܧ2 cos ߳
௢௫ଶܧ െ ௢௬ଶܧ

. 

 
There is an entire field called ellipsometry where the detailed study of how materials change the 
polarization state can be used to determine the absorption and index of refraction of materials as 
well as the thickness of thin films. 
 
For now, however, how do we produce these effects.  The easiest to understand is the linear 
polarizer.  Recall that metals are good conductors of electricity, so they are generally good 
reflectors of light because the electric field is mostly reflected.  A wire grid polarizer consists of 
very closely spaced wires streched between rigid holders.  When the electric field is parallel to the 
wire grids, the electric field is mostly reflected or absorbed because of currents that are set up in 
the wires, but when the field is perpendicular to the wires, no currents can be set up, so the field 
transmits through the polarizer.  You might note that this arrangement is opposite to the way you 
are shown when transverse waves on a string are discussed.  For visible light, it is hard to make 
free standing wire grid polarizers, so long chains of conductors with iodine are used, but the effect 
is the same.  Your text explains the details of these so-called H sheets.  A 
linear polarizer is essentially a highly anisotropic material that behaves 
like a conductor for component of fields along one direction and like a 
dielectric (nonconductor) for components of fields in the other 
perpendicular direction.  Here is a figure that shows the idea. 
 
Creating the phase shifts is done in a different way.  Phase shifts are created using birefringent 
materials.  In these materials, waves with electric fields along one of the axes travel at a different 
speed than waves with the electric field along one of the other axes.  One axis in the material is 
called the slow axis, and the other axis is called the fast axis.  The figure on the following page 
shows the basic idea of these anisotropic materials.  We will say more later about the actual 
structure of the materials that cause these effects. 
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You may recall that you spent considerable time in both your 
introductory and intermediate mechanics course studying 
harmonic oscillators.  As you were probably told, the reason is 
not that we study harmonic oscillators for their own sake, but 
because they are a good model for how anisotropic materials 
behave.  As you might guess, the effective spring constant 
determines how the material responds to an electric field.  For 
this model, both the direction of propagation of the wave and the 
polarization of the electric field determine this behavior.  
Typically, these materials are crystalline so this anisotropic 
behavior is observable.  For the figure shown, the electric field 
given by Ex will travel slightly faster through the material than 
the Ey component.  We know that the difference in speed is 
related to the difference between nf and ns.  The optical path 
difference between the two waves is given by 
 

ܦܱܲ ൌ ห݊௙ െ ݊௦ห݀, 
 
where d is the thickness of the material.  How do we relate the 
OPD to the phase difference between the waves, what we have called ߳?  When the wave travels 
one wavelength , the phase has changed by 2.  Therefore, we might expect that the relationship 
between phase difference and OPD is given by 
 

ܦܱܲ
ߣ

ൌ
߳
ߨ2
. 

 
Suppose we wanted to create a phase difference of 2/ߨ.  That means that 
 

ܦܱܲ
ߣ

ൌ
2/ߨ
ߨ2

ൌ
1
4
	so	ܱܲܦ ൌ

ߣ
4
ൌ ห݊௙ െ ݊௦ห݀. 

 
For a specific wavelength of light, we can adject the thickness of the material to give a quarter 
wave plate is we know the values of ݊௙and	݊௦.		 
 
NEXT TIME: Birefringence, optic axes, ordinary and extraordinary indices of refraction, and 
examples, Jones vectors and Jones matrices description of polarization. 


