Physics 3312 Lecture 12 February 25, 2019

Lecture 11 was examination 1.

c?e, EZ

LAST TIME: [ = —*-=2 = ?Eﬁ in free space, I = ev(E?)r; v = % = Vi, A = %
Boundary conditions, Fresnel equations (coefficients)

Recall that using the electromagnetic approach, we recovered Snell’s law, but we also now know
how much light is reflected and how much is transmitted as a function of the angles and indices of
refraction. The polarizing angle for the electric field parallel to the plane of incidence was also
something new because geometrical optics cannot consider polarization.

Now we want to extend our discussion to include not only the
amplitude coefficients but also the energy transmitted across the
boundary because that is what our detectors measure. Our
equations are written first for the case of perfect dielectrics — no
absorption. We are interested in the energy flow per unit time
across a unit area. The following figure shows a two-dimensional
version of how things look at a boundary. The area A is the area
at the surface, and each of the areas shown are given by

Aj=AcosB;; A,=Acosf,.; A;=Acosb,.
Therefore, the power in each of the beams is given by
P, =1;Acos®;; P.=1.Acos6,; P.=I1Acosb,.

The reflectance is defined as the ratio of the reflected power to the incident power, so
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The transmittance, however, looks a bit different because the two waves are not in the same
medium and do not have the same area. The result for the transmittance is given by
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Now we can understand why the transmittance is not just equal to the transmission coefficient
squared. The indices of refraction are present because they are indicators of the speed at which
energy is transmitted. The cosines are present because the areas of the incident beam and the
transmitted beam are different. With no absorption, the energy flow into and out of the surface
must be equal. This conservation of energy results in



[;Acos0; = [LAcos @, + I,Acos6,.
We divide through by the left-hand side to obtain
1=R+T.
This is the conservation of energy when no absorption is present. When absorption is present, we

would expect to find
R+T+A=1.

One of the common ways to measure absorption is to measure
the transmittance and reflectance and use A =1 — (R + T).
Here are some graphs that show transmittance and reflectance _
for both the electric field perpendicular and parallel to the r—y
plane of incidence. These are for external reflections. You
can see the effect at the polarizing angle where the reflectance
becomes zero and the transmittance becomes one. Because
we know the general expressions for the reflectance and
transmittance, we may use either r,, t,, 7, or t, to get the
corresponding expression for T or R. For normal incidence
on glass with the index of refraction 1.5, we see that the
reflectance is given by
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Rafectance Trarwmimance snd Absorplon of Alumeeses on BT glass

The one-way glass you sometimes see is accomplished by

coating a thin layer of metal on glass to create a situation = = |\

where the reflectance and transmittance are about equal. One : « \\ /

side is kept darker than the other side, so the persons on the =2} ¥

dark side can see the persons on the bright side, but the persons | “ = | / H\

on the bright side cannot see the persons on the dark side = =¥ R e
because their reflection is much brighter than the transmitted " Y it

light from the dark side. The figure to the right shows the
reflectance, transmittance, and absorbance as a function of the aluminum film thickness on BK7
glass.

Polarization

An electromagnetic wave is said to be polarized if the electric field vector has a well-defined and
unchanging path. The easiest way to visual polarized light is to consider the behavior of the electric
field when we imagine we look at how the electric field behaves in time at a fixed location in
space. Under these conditions, the electric field vector should trace out a repeatable path, usually
a line, circle, or an ellipse depending on how the wave is polarized. Because the electric field is a
vector, it is possible to create the total electric field by superposing (adding) two electric field
vectors with the appropriate amplitude and phase.



Before we start a discussion of general polarization, we should comment on what is meant by light
that is not polarized. Light that does not satisfy our definition of polarized light is said to be
unpolarized, randomly polarized, or simply natural light. The electric field in this type of light is
randomly distributed. You could not trace out a predictable path of the electric field if you looked
at its time dependence in a specific plane.

Let’s look at the superposition of two electromagnetic waves x

whose amplitudes and phase difference can be varied. We take

the propagation direction to be along the positive z direction, so E,

our fields will lie in the x-y plane as shown. It is important to

understand that the two fields may not reach their maximum

values at the same time, so there is a phase difference between the k,z
two fields. The components of the two fields are given by

E, = E,x cos(kz — wt) and E,, = E,, cos(kz — wt + ¢€),
where € is the phase difference between the two fields. In vector notation, the total field is given
by

E(Z, t) = Ex(Z: t)ﬁ + Ey(ZI t))/’\

We will eliminate the t from our equations so we can see what the spatial path looks like. To do
that, we expand the cosine function in E,, to obtain

E, = Eyy[cos(kz — wt) cos € — sin(kz — wt) sin €]
Es < E,* )“ .
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Therefore,

Finally,

You may remember that the general equation for a rotated and translated conic section (circle,
ellipse, or hyperbola) is given by

Ax?> 4+ Bxy + Cy*+ Dx + Ey + F = 0.

Here, E, and E,, play the role of x and y, and D = E = 0. We wish to investigate the path the
electric field traces out in a section where z = constant when we allow E,,,, E,,, and € to vary.



Case 1: € = 0, +2m, +4m, etc. E,, and E,,,, arbitrary.
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This case results in linearly polarized light with the electric field making an angle of
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Should E,, or E,,, be zero, then the LP state is along one of the coordinate axis.

€ = *m, +3m, etc. E,, and E,,, arbitrary.
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This is still an LP state with E anti parallel to the earlier state.

Case 2: € = /2 with E,, = E,y, = E,
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We have the equation of a circle in either case, but there is a difference that we can see if we make
a plot in time of how the electric field behaves. Atz =0, how does the electric field rotate? Here
are three figures at different «t times to see what happens. E, = E, cos(—wt) and

E, = E, cos(—wt + m/2).
Eo at a fixed position in space. This is said to be
left circularly polarized light (LCP). You can
‘ E, ’ | also show that if € = —g, the electric field

rotates cw at a fixed position in space. This
@0 ot~ 72 -7 case is said to be right circularly polarized light
(RCP). In optics, we agree to look back toward
the source to determine the handedness. This is

With € = +m/2, the electric field rotates ccw

A

not true in all disciplines.



Case3: e = +§With Eoy # Egy # 0
This results in our equation becoming
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which is the equation of an ellipse with the major and minor axes aligned with the coordinate axes.

Finally, if everything is arbitrary but not zero, we get the most general equation for an ellipse with
the major and minor axes rotated with respect to the coordinate axes. The equation is given by
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which is our most general equation. The angle the ellipse axes make with respect ot the coordinate
axes is given by
2 = tan-1 2E,xE,, cos€
ng - Eozy
There is an entire field called ellipsometry where the detailed study of how materials change the
polarization state can be used to determine the absorption and index of refraction of materials as
well as the thickness of thin films.

For now, however, how do we produce these effects. The easiest to understand is the linear
polarizer. Recall that metals are good conductors of electricity, so they are generally good
reflectors of light because the electric field is mostly reflected. A wire grid polarizer consists of
very closely spaced wires streched between rigid holders. When the electric field is parallel to the
wire grids, the electric field is mostly reflected or absorbed because of currents that are set up in
the wires, but when the field is perpendicular to the wires, no currents can be set up, so the field
transmits through the polarizer. You might note that this arrangement is opposite to the way you
are shown when transverse waves on a string are discussed. For visible light, it is hard to make
free standing wire grid polarizers, so long chains of conductors with iodine are used, but the effect
is the same. Your text explains the details of these so-called H sheets. A

linear polarizer is essentially a highly anisotropic material that behaves

like a conductor for component of fields along one direction and like a @ >~ 74

dielectric (nonconductor) for components of fields in the other
perpendicular direction. Here is a figure that shows the idea.

Creating the phase shifts is done in a different way. Phase shifts are created using birefringent
materials. In these materials, waves with electric fields along one of the axes travel at a different
speed than waves with the electric field along one of the other axes. One axis in the material is
called the slow axis, and the other axis is called the fast axis. The figure on the following page
shows the basic idea of these anisotropic materials. We will say more later about the actual
structure of the materials that cause these effects.



You may recall that you spent considerable time in both your "
introductory and intermediate mechanics course studying f
harmonic oscillators. As you were probably told, the reason is
not that we study harmonic oscillators for their own sake, but
because they are a good model for how anisotropic materials
behave. As you might guess, the effective spring constant
determines how the material responds to an electric field. For
this model, both the direction of propagation of the wave and the
polarization of the electric field determine this behavior.
Typically, these materials are crystalline so this anisotropic
behavior is observable. For the figure shown, the electric field

given by Ex will travel slightly faster through the material than slow axis
the Ey component. We know that the difference in speed is Y
related to the difference between nt and ns. The optical path

difference between the two waves is given by /94 E

X fast axis

OPD = |n; — nyd,

where d is the thickness of the material. How do we relate the

OPD to the phase difference between the waves, what we have called €? When the wave travels
one wavelength A, the phase has changed by 27z Therefore, we might expect that the relationship
between phase difference and OPD is given by

A 21

OPD ¢

Suppose we wanted to create a phase difference of /2. That means that

OPD m/2 1 OPD—A—| d

/1—27_[—450 —4—nf ngla.
For a specific wavelength of light, we can adject the thickness of the material to give a quarter
wave plate is we know the values of nrand ng.

NEXT TIME: Birefringence, optic axes, ordinary and extraordinary indices of refraction, and
examples, Jones vectors and Jones matrices description of polarization.



