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Physics 3312                                             Lecture 10                                              February 18, 2019 
 

LAST TIME: EM theory of light, Maxwell’s equations, wave equations for E and B, 
ா೚
஻೚
ൌ ܿ 

ࡱ ٣ ࡮ ٣ ࢑	and	ࡿ, 〈݁௜ఠ௧〉் ൌ ݁௜ఠ௧sinc	 ቀఠ்
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܁ ൌ ଵ

ఓ೚
۳ ൈ ۰ ൌ cଶ߳௢۳ ൈ ۰  

 
In optics, we usually refer to the time-averaged Poynting vector as the irradiance.  It is the same 
as intensity when general EM waves are considered.  Therefore, 
 

ࢀ〈|܁|〉 ൌ ܿଶ߳௢|۳௢ ൈ ۰௢|〈cosଶ ܓ ∙ ܚ െ ்〈ݐ߱ ൌ
ܿଶ߳௢
2

|۳௢ ൈ ۰௢|	for	߱ܶ ≫ 1.	 

Finally, 
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What is the expression for the electric field of a HeNe laser operating at 1 mW?  Calculate B as 
well.  We will use a beacm diameter of 1 mm with a wavelength of 633 nm.  We write the electric 
field as 

۳ ൌ ۳௢݁௜
ሺ௞௭ିఠ௧ሻ. 

 

〈ܵ〉 ൌ
ሺ1 ൈ 10ିଷሻ4
ሺ1ߨ ൈ 10ିଷሻଶ

ൌ
ܿ߳௢
2
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቉ ൌ ቈ
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቉
ଵ/ଶ

ൌ 980
V
m
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Then 

௢ܤ ൌ
௢ܧ
ܿ
ൌ 3.3 ൈ 10ି଺	T 

 

݇ ൌ
ߨ2
ߣ
ൌ 9.9 ൈ 10଺	mିଵ		and	߱ ൌ 3 ൈ 10ଵହ	rad/s 

Therefore, our wave is 
۳ ൌ ݁௜൫ଽ.ଽൈଵ଴	ොܠ	980

ల௭ିଷൈଵ଴భఱ௧൯	V/m 
and 

۰ ൌ 3.3 ൈ 10ି଺	ܡො	݁௜൫ଽ.ଽൈଵ଴
ల௭ିଷൈଵ଴భఱ௧൯	T 

 
In a material such as glass, the irradiance takes on a slightly different to account for being in a 
material instead of a vacuum.  The expression becomes 
 

ܫ ൌ  ்〈ଶܧ〉ݒ߳
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௡
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௖
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௡
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We are now in a position to understand why the amplitude in a spherical wave must vary as (1/r).  
Because the energy is conserved in the wave, and the area of a sphere increases as r2, the product 
of the surface area and the irradiance must be constant.  Similarly, for the cylindrical wave, the 

surface area varies as r, so the amplitude of the wave must vary as 
ଵ

√௥
.		 

 
Now we want to look at the way light interacts with boundaries.  
We know that Snell’s law and the law of reflection predict where 
light goes when it encounters a boundary, but neither of them tell 
us how much goes where.  We are now in a position to determine 
the answer to that question.  The figure shows the k vectors for 
the incident wave, the refpected wave, and the transmitted wave.  
Notice that we have not yet put directions of E or B in the figure.  
The only requirement is that the three vectors form a right-
handed Cartesian coordinate system.  Let’s write each of the 
incident electric fields as expressions given by 
 

۳௜ ൌ ۳௢௜݁௜ሺܓ೔∙ିܚఠ೔௧ሻ, ۳௥ ൌ ۳௢௥݁௜ሺܓೝ∙ିܚఠೝ௧ାఋೝሻ, and	۳௧ ൌ ۳௢௧݁௜ሺܓ೟∙ିܚఠ೟௧ାఋ೟ሻ. 
 
So long as E is perpendicular to B and k, we are OK.  It turns out that Maxwell’s equations make 
some interesting conditions on E and B at an interface.  They are most easily used in integral form 
to derive what are called boundary conditions.  Here are the boundary that apply when an EM 
wave crosses a dielectric boundary. 
 
1. The tangential component of the electric field E in continuous.  Being continuous means that 
the sum of the fields ono one side of the boundary must equal the sum of the fields on the other 
side of the boundary.  This is usually written as ܧଵ௧ ൌ  It follows from Faraday’s law as the		ଶ௧.ܧ
area of a small rectangle vanishes when the line integral shrinks. 
 
2. The normal (perpendicular) component of the magnetic field B is continuous across the 
boundary.  This is usually written as ܤଵ௡ ൌ  .and follows from Gauss’s law for magnetic fields	ଶ௡ܤ
 
3. The normal component of E is continuous across the boundary, where  is the permittivity of 
the material.   is related to the index of refraction, so we will convert our final results to n.  This 
is written in equation form as ߳ଵܧଵ௡ ൌ ߳ଶܧଶ௡. 
 

4. The tangential component of 
۰

ఓ
	is continuous across the boundary, where  is the permeability 

of the material.  is usually set to because most optical materials do not have strong magnetic 

properties.  The equation form of this boundary condition is given by 
஻భ೟
ఓభ
ൌ ஻మ೟

ఓమ
. 

 
It turns out that the existence of BCs provides us with information.  The BCs must hold at all times 
and at all locations along the boundary.  Therefore, we see that ߱௜ ൌ ߱௧ ൌ ߱௥.		That the 
frequencies must be the same in classical physics also arises from the fact that the frequency is 
determined by a counting process – so many oscillations per second.  The spatial part yields 
௜ܓ ∙ ܚ ൌ ሺܓ௥ ∙ ܚ ൅ ௥ሻߜ ൌ ሺܓ௧ ∙ ܚ ൅  .evaluated at the boundary y = b	௧ሻߜ
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Therefore, ሺܓ௜ െ ௥ሻܓ ∙ ܚ ൌ ௜ܓሺ	and	௥ߜ െ ௧ሻܓ ∙ ܚ ൌ   r sweeps out a plane (the surface)	௧.ߜ
perpendicular to ሺܓ௜ െ ௜ܓso ሺ	௥ሻܓ െ ௥ሻܓ ∥  ,is the unit normal to the surface.  Finally	ෝ௡ܝ ෝ௡, whereܝ
ሺܓ௜ െ ௥ሻܓ ൈ ෝ௡ܝ ൌ 0	and ݇௜ sin ௜ߠ ൌ ݇௥ sin ௥ߠ , but	݇௜ ൌ ݇௥, so we obtain the law of reflection 
 

௜ߠ ൌ  .௥ߠ
By a similar argument, we also obtain 
 

݇௜ sin ௜ߠ ൌ ݇௧ sin  	.௧ߠ
 
Now, however, the ks donot have the same magnitude, but we can multiply both sides by c/ to  
get 

݊௜ sin ௜ߠ ൌ݊௧ sin  .௧ߠ
 
Because of the vector nature of our approach, we also see 
that all of the k vectors and the unit normal to the plane 
lie in a plane that we call the plane of incidence.  To make 
use of the nature of the BCs, we need to decide on a 
direction of the electric field.  The following figures from 
Hecht show one choice of the direction of E.  This choice 
is referred to as E perpendicular to the plane of incidence.  
We do need to remember, however, that when we are in 
a material, E = vB, instead of cB.  For our particular 
choice of the field directions, our BCs become 
 

௢௜ܧ ൅ ௢௥ܧ ൌ  	௢௧ܧ
and 

െ
௢௜ܤ
௜ߤ

cos ௜ߠ ൅
௢௥ܤ
௜ߤ

cos ௥ߠ ൌ െ
௢௧ܤ
௧ߤ

cos  .௧ߠ

 
The second BC comes from the continuity of the 
tangential component of B/As I mentioned earlier, 
most optical materials are nonmagnetic so As 
our last step, we convert B to E using E = vB.  We now 
have two equations is two unknowns that we may solve for the ratios of the reflected E field to the 
incident E field and the ratio of the transmitted E field to the incident E field.  These are known as 
the Fresnel coefficients (equations) because Fresnel derived them before Maxwell’s equations 
were known.  Their validity extends to linear, homogeneous, isotropic media.  Here they are: 
 

ݎୄ ൌ ൬
௢௥ܧ
௢௜ܧ

൰
ୄ
ൌ
݊௜ cos ௜ߠ െ ݊௧ cos ௧ߠ
݊௜ cos ௜ߠ ൅ ݊௧ cos ௧ߠ

 

and 

ୄݐ ൌ ൬
௢௧ܧ
௢௜ܧ

൰
ୄ
ൌ

2݊௜ cos ௜ߠ
݊௜ cos ௜ߠ ൅ ݊௧ cos ௧ߠ

 

 
ݎୄ 	is	the	amplitude	reflection	coefficient	and	ୄݐ	is	the	amplitude	transmission	coefficient. 
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The electric field may lie in the plane of incidence or be 
parallel to it.  Here are the figures from Hecht that show this 
case.  For this case, the magnetic fields have all been selected 
to have the same direction, consistent with E and k.  This 
time, we apply the same BCs, but the equations are different 
because the electric has been rotated by 90 degrees. 
 

௢௜ܧ cos ௜ߠ െܧ௢௥ cos ௥ߠ ൌܧ௢௧ cos  ௧ߠ
and 

1
௜ݒ௜ߤ

௢௜ܧ ൅
1

௥ݒ௥ߤ
௢௥ܧ ൌ

1
௧ݒ௧ߤ

 ௢௧ܧ

 
Again, we assume that the material is nonmagnetic so we finally 
obtain 

∥ݎ ൌ ൬
௢௥ܧ
௢௜ܧ

൰
∥
ൌ
݊௧ cos ௜ߠ െ ݊௜ cos ௧ߠ
݊௜ cos ௧ߠ ൅ ݊௧ cos ௜ߠ

 

and 

∥ݐ ൌ ൬
௢௧ܧ
௢௜ܧ

൰
∥
ൌ

2݊௜ cos ௜ߠ
݊௜ cos ௧ߠ ൅ ݊௧ cos ௜ߠ

. 

 
Sometimes, we would like to write these entirely in terms of the angles rather than involve the 
indices of refraction.  We use Snell’s law to do this and obtain 
 

ݎୄ ൌ െ
sinሺߠ௜ െ ௧ሻߠ
sinሺߠ௜ ൅ ௧ሻߠ

∥ݎ					 ൌ െ
tanሺߠ௜ െ ௧ሻߠ
tanሺߠ௜ ൅ ௧ሻߠ

 

and 

ୄݐ ൌ
2 sin ௧ߠ cos ௜ߠ
sinሺߠ௜ ൅ ௧ሻߠ

∥ݐ					 ൌ
2 sin ௧ߠ cos ௜ߠ

sinሺߠ௜ ൅ ௧ሻߠ cosሺߠ௜ െ ௧ሻߠ
. 

 
Let’s look at the case for normal incidence where ߠ௜ ൌ ௥ߠ ൌ ௧ߠ ൌ 0.		We note that 
 

ݎୄ ൌ
݊௜ െ ݊௧
݊௜ ൅ ݊௧

ൌ െݎ∥. 

 
The reason that these do not result in the same value is that the notion of the plane of incidence is 
no longer applicable because everything has collapsed to a line.  On the other hand, we do find 
that, at ߠ௜ ൌ ௥ߠ ൌ ௧ߠ ൌ 0 

ୄݐ ൌ ∥ݐ ൌ
2݊௜

݊௜ ൅ ݊௧
.		 

 
Let’s point out one thing now that is a bit odd, but we will come back to it later and explain what 
is going on.  If we calculate the reflection and transmission coefficients for light incident from air 
to glass we find that 
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ݎୄ ൌ
1 െ 1.5
1 ൅ 1.5

ൌ െ0.2	and	ୄݐ ൌ
2ሺ1ሻ

2.5
ൌ 0.8, 

 
but when we go from a high index medium to a low index medium, we find that 
 

ݎୄ ൌ
݊௜ െ ݊௧
݊௜ ൅ ݊௧

ൌ
1.5 െ 1
1.5 ൅ 1

ൌ ൅0.2	and	ୄݐ ൌ
2ሺ1.5ሻ

2.5
ൌ 1.2.		 

 
This seems odd to have a transmission amplitude coefficient great than 1, but we will see when we 
calculate the irradiance, all is well.  Its occurs because the energy flow rate is slower in the higher 
index medium than in air.  The negative sign in the reflection coefficient means that a phase change 
has occurred, and the reflected electric field is reversed in direction compared to the incident field. 
 
Because Snell’s law follows from the electromagnetic treatment, there are no surprises concerning 
the critical angle for total internal reflection, but there is one thing that does not show up in the ray 
treatment.  Consider the expression given by 

∥ݎ ൌ െ
tanሺߠ௜ െ ௧ሻߠ
tanሺߠ௜ ൅ ௧ሻߠ

. 

 
When ߠ௜ ൅ ௧ߠ ൌ 90௢, ∥ݎ ൌ 0.  The 
value of ߠ௜	for which this occurs is 
called the polarizing angle or 
Brewster angle because only light 
polarized perpendicular to the plane 
of incidence is reflected.  Let’s look 
at some graphs from Hecht to see 
how the angular dependence of the 
coefficients behaves.  The cases 
shown in the figure to the right are 
for external reflections (nt > ni), 
where we go from air to glass.  There 
are some key things to notice here.  
ݎୄ  is always negative, but ݎ∥	changes 
sign at the polarizing angle.  The 
transmission coefficients are always 
positive.  The next page has the 
coefficients for the case on an 
internal reflection where nt < ni.   
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These are the reflection coefficients only 
because the transmission coefficients do not 
show any particularly interesting behavior.  
Note that for an internal reflection, ୄݎ  is 
always positive, but the parallel coefficient 
changes from negative to positive at the 
polarizing angle. 
 

 

 
 

 
 
 
NEXT TIME: Examination 1covering geometrical optics. 


