Physics 3312 Lecture 10 February 18, 2019

LAST TIME: EM theory of light, Maxwell’s equations, wave equations for E and B, % =c
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In optics, we usually refer to the time-averaged Poynting vector as the irradiance. It is the same
as intensity when general EM waves are considered. Therefore,

c’e
(ISI)y = c?€,|E, X B,|{cos?’ K r — wt); = TO|E0 x B,| for wT > 1.

Finally,
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What is the expression for the electric field of a HeNe laser operating at 1 mW? Calculate B as
well. We will use a beacm diameter of 1 mm with a wavelength of 633 nm. We write the electric
field as

E = Eoei(kz_wt).
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= 1 9.9 x10°m™" and w = 3 x 10° rad/s
Therefore, our wave is
E =980% ei(9-9><1062—3><1015t) V/m
and
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In a material such as glass, the irradiance takes on a slightly different to account for being in a
material instead of a vacuum. The expression becomes
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We are now in a position to understand why the amplitude in a spherical wave must vary as (1/r).
Because the energy is conserved in the wave, and the area of a sphere increases as r?, the product
of the surface area and the irradiance must be constant. Similarly, for the cylindrical wave, the

surface area varies as r, so the amplitude of the wave must vary as %
Now we want to look at the way light interacts with boundaries. ,
We know that Snell’s law and the law of reflection predict where '
light goes when it encounters a boundary, but neither of them tell
us how much goes where. We are now in a position to determine
the answer to that question. The figure shows the k vectors for
the incident wave, the refpected wave, and the transmitted wave.
Notice that we have not yet put directions of E or B in the figure.
The only requirement is that the three vectors form a right- = out
handed Cartesian coordinate system. Let’s write each of the
incident electric fields as expressions given by

Ei — Eoiei(ki-r—wit)’ ET — Eorei(kr-r—wrt+8r),and Et — Eotei(kt-r—wtt+8t).

So long as E is perpendicular to B and k, we are OK. It turns out that Maxwell’s equations make
some interesting conditions on E and B at an interface. They are most easily used in integral form
to derive what are called boundary conditions. Here are the boundary that apply when an EM
wave crosses a dielectric boundary.

1. The tangential component of the electric field E in continuous. Being continuous means that
the sum of the fields ono one side of the boundary must equal the sum of the fields on the other
side of the boundary. This is usually written as E;; = E,;. It follows from Faraday’s law as the
area of a small rectangle vanishes when the line integral shrinks.

2. The normal (perpendicular) component of the magnetic field B is continuous across the
boundary. This is usually written as B,,, = B,,, and follows from Gauss’s law for magnetic fields.

3. The normal component of ¢E is continuous across the boundary, where ¢ is the permittivity of
the material. ¢is related to the index of refraction, so we will convert our final results to n. This
is written in equation form as €, E;,, = €,E,,,.

4. The tangential component of g IS continuous across the boundary, where u is the permeability

of the material. g is usually set to u, because most optical materials do not have strong magnetic

properties. The equation form of this boundary condition is given by % = %.

1
It turns out that the existence of BCs provides us with information. The BCs must hold at all times
and at all locations along the boundary. Therefore, we see that w; = w; = w,. That the
frequencies must be the same in classical physics also arises from the fact that the frequency is
determined by a counting process — so many oscillations per second. The spatial part yields
k;r=(k, r+6,) = (k; r+ ;) evaluated at the boundary y = b.



Therefore, (k; —k,)-r=4,and (k; —k,)-r=245;. r sweeps out a plane (the surface)
perpendicular to (k; — k,.) so (k; — k,.) |l G, where 1i,, is the unit normal to the surface. Finally,
(k; — k,) xu,, = 0and k; sin9; =k, sin 6,., but k; = k,., S0 we obtain the law of reflection

By a similar argument, we also obtain
k; sin8; =k, sin 6;.

Now, however, the ks donot have the same magnitude, but we can multiply both sides by ¢/w to
get
n; sin@; =n; sin 6,

Because of the vector nature of our approach, we also see Y
that all of the k vectors and the unit normal to the plane

lie in a plane that we call the plane of incidence. To make - _
use of the nature of the BCs, we need to decide on a R N Rl
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direction of the electric field. The following figures from p AN ’\‘/ ’ﬁ/
Hecht show one choice of the direction of E. This choice ,~ PSS
is referred to as E perpendicular to the plane of incidence. — K &
We do need to remember, however, that when we are in AR

a material, E = vB, instead of cB. For our particular
choice of the field directions, our BCs become

Eyi + Eor = Eot - o

and o o K
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The second BC comes from the continuity of the "ﬂvrf.'_ B
tangential component of B/« As | mentioned earlier, ; e
most optical materials are nonmagnetic So g = uo. As ' \ K,

our last step, we convert B to E using E =vB. We now

have two equations is two unknowns that we may solve for the ratios of the reflected E field to the
incident E field and the ratio of the transmitted E field to the incident E field. These are known as
the Fresnel coefficients (equations) because Fresnel derived them before Maxwell’s equations
were known. Their validity extends to linear, homogeneous, isotropic media. Here they are:

E,, n; cos 8; — n; cos 6,
r = =

Eoi/ | ~ n;cosB; +n,cos b,
and
. (Eot) 2n; cos 0;
+ 7 \E,; L ~ n;cos6; +n,cos b,

7, is the amplitude reflection coefficient and t, is the amplitude transmission coefficient.



The electric field may lie in the plane of incidence or be

parallel to it. Here are the figures from Hecht that show this Z,
case. For this case, the magnetic fields have all been selected
to have the same direction, consistent with E and k. This >
time, we apply the same BCs, but the equations are different 7N " L s
because the electric has been rotated by 90 degrees. ™ LR ot

E,;cos8; —E,, cos 8, =E,; cos 6,

and
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Again, we assume that the material is nonmagnetic so we finally
obtain T
(Eor> ng cos 8; — n; cos 6, i\
T =— = K,
! Eoi/, mjcos6 +ngcosb;
and
(Eot) 2n; cos 6;
= \E,, | TicosB; +ngcos;

Sometimes, we would like to write these entirely in terms of the angles rather than involve the
indices of refraction. We use Snell’s law to do this and obtain

_ sin(6; — 6,) _ tan(0; — 6,)

T TSN, +6,) T tan(s, + 6,)
and
_ 2sinf; cos b; 2 sin 6, cos 6;

ty=———F—F~ {4 = :
L7 sin(; + 6,) "™ sin(6; + 6,) cos(6; — 6;)

Let’s look at the case for normal incidence where 6; = 6,. = 8, = 0. We note that

ny —ng

n; +n;

Ty = -1

The reason that these do not result in the same value is that the notion of the plane of incidence is
no longer applicable because everything has collapsed to a line. On the other hand, we do find
that,at9, =6, =0, =0

Let’s point out one thing now that is a bit odd, but we will come back to it later and explain what
is going on. If we calculate the reflection and transmission coefficients for light incident from air
to glass we find that
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but when we go from a high index medium to a low index medium, we find that

n—n  15-1

B 2(15)
T my+n, 15+1

—=1.2
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T, =+02andt, =

This seems odd to have a transmission amplitude coefficient great than 1, but we will see when we
calculate the irradiance, all is well. Its occurs because the energy flow rate is slower in the higher
index medium than in air. The negative sign in the reflection coefficient means that a phase change
has occurred, and the reflected electric field is reversed in direction compared to the incident field.

Because Snell’s law follows from the electromagnetic treatment, there are no surprises concerning
the critical angle for total internal reflection, but there is one thing that does not show up in the ray
treatment. Consider the expression given by
tan(6; — 6,)
=
I tan(6; + 6;)

When 6; + 6, =90°7r,=0. The
value of 8; for which this occurs is
called the polarizing angle or
Brewster angle because only light
polarized perpendicular to the plane
of incidence is reflected. Let’s look
at some graphs from Hecht to see
how the angular dependence of the
coefficients behaves. The cases
shown in the figure to the right are
for external reflections (nt > ni),
where we go from air to glass. There
are some key things to notice here.
r, is always negative, but r; changes
sign at the polarizing angle. The
transmission coefficients are always
positive. The next page has the
coefficients for the case on an
internal reflection where n¢ < ni.
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These are the reflection coefficients only 1.0
because the transmission coefficients do not
show any particularly interesting behavior.
Note that for an internal reflection, r, is
always positive, but the parallel coefficient 0.5
changes from negative to positive at the

polarizing angle.
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NEXT TIME: Examination 1covering geometrical optics.
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