Physics 3312 Lecture 9 February 13, 2019
LAST TIME: Finished mirrors and aberrations, more on plane waves

Recall
l/)(x, t) — Ae“kl;wt)

Represents a plane wave having a propagation vector k that
propagates in any direction with respect to the coordinate axis.
We also saw a convenient way of adding waves by what is
called the method of phasor addition. A phasor is nothing
more than a vector whose length is the amplitude of a wave
and whose angle is the phase with respect to the previous wave
as the figure shows. Plane waves are certainly not the only
kind of wave we wish to consider, but they are very important
because any wave may be represented by a linear combination of planes. Spherical waves and
cylindrical waves also play an important role in physics. In three dimensions, the wave equation
without sources takes the form given by

1 0%y(r,t)
VZy(rt) - —————"=
In Cartesian coordinates, VZ— — + — + —. V2 is the Laplacian operator and is common in

physics. It is not difficult to determlne the LapIaC|an operator in other coordinate systems if you
know the transformation equations from one system to the other. In optics, one of the most
important wave is the spherically symmetric wave whose wave function is a function of r only. In
equation form,

Y(r,6,¢) = y(r) only.
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Therefore,
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Finally, incorporating the time dependence,

a 2 (ﬁvb( )) 2 atz (T?,l)(r)) = 0.

Why are we able to multiply through by r in this case?
Therefore,

r(r,t) = Cf(r —vt) + C,g(r + vt)
and

C.f(r —vt) N C,g(r + vt)
r r '

l/)(r; t) =

The amplitude of a spherical wave changes inversely with r. In general, the energy in a wave is
proportional to its amplitude squared, so the energy changes inversely with r?, and the total energy



in a sphere of radius r does not change. Cylindrical waves do not work out quite so nicely, so we
can only write an expression for large r or p (some books use pin place of r for cylindrical
coordinates) for cylindrical waves. The actual equation is given by

A .
rt) = —elkr-wt),
Y(r,t) =
For a spherical wave, we may write
A .
rt)=— et(k,r—a)t).
Y, t) =
The dependence on r will become clear after we determine how the energy of the wave looks.
Electromagnetic Theory of Light
Maxwell equations (ME) govern electromagnetic behavior. We are going to use them to determine
the form of an electromagnetic wave so we can know the properties of a light wave. They may be

written in two different forms: the integral form and the differential form. Here they are in both
forms for free space.
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You used the integral form primarily in your introductory course when you were called on to
calculate electric and magnetic fields due to charges and currents. The vector operator V depends
on the coordinate system in which it is being used, but in Cartesian coordinates it is given by

The divergence theorem and Stokes’ theorem are used to go back and forth between the integral
and differential forms of ME.
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For now, we will not worry how the wave of interest was created, so we can deal directly with the
source-free forms of ME. This assumption amounts to setting p and J to zero. Then ME become

0E

OB
V-E=0; V:B=0; VxE=-—> VXE=pe—

Jt

Using the properties of the vector differential operators, we can eliminate either E or B to see what
equations they obey. Here is how the process works starting on the next page.
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Therefore, the electric field satisfies a wave equation exactly like what we determined earlier.
Now, however, the field is a vector, not a scalar as before. The same equation holds for the
magnetic field as well so

Notice that to be consistent with our previous wave equation, the speed of the wave must be given

by
1 1
'uoe‘o = — PV =
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2 = ¢ = speed of light in vacuum.

Now that we know ME allow for a wave equation, exactly how is the wave structured? The easiest
way to determine the answer to this question is to assume a particular form of the electric field and
see how everything else behaves. Therefore, we assume that

E = Epy(x, t)e!tx-t+9g, E . =E, =0

These equations for the electric field must satisfy ME if our assumption for the form of E can be
correct. The curl function is most easily remembered by using the determinant form given by
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Using E,, = E, = 0, we see that
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Now we use our specific form of the electric field to calculate V x E and we obtain
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The solution for B: is given by
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Notice now that E and B are perpendicular and they are E

both perpendicular to the direction of propagation of the

wave. Our picture thenis E L B L k. Notice that E and )

B are in phase; i.e., both reach maximum and minimum

values at the same time, but the magnitude of E is much

larger that that of B. If we recall the Lorentz force law for d
charges F = qE + qvxB, it seems that E should have a B
much larger effect than B. Indeed, this is the case for most

materials, so E is usually considered the light vector,

although B must be present for any wave to exist. Here is

the algebra showing how it works.

Femax VB v
=—=-«1
Fg E ¢

Otto Weiner did an interesting experiment based on interference that showed experimentally that
the electric field did dominate in most materials. EM waves carry energy, momentum, and in some
cases angular momentum. Without getting too far afield, here are the exresssions for the energy
densities of the electric and magnetic fields.

€o 1
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Because E = ¢B, and ¢? = (uy€,) Y, up = i(é) = %"EZ = ug. This means that the energy in

the wave is stored equally between the electric and magnetic fields despite having the elelctric
field dominate the forces. The magnitude of the Poynting vector S is the power/area crossing a
surface and is an important consideration when we study how light behaves at an interface. Recall
that power is the energy per time. S is given by

1
S=—E X B = c%¢,E X B.
Ho

S is parallel to k and also perpendicular to both E and B. Keep in mind that these fields are
changing very rapidly because the frequency of green light is on the order of 10 H and w is on
the order of 10% rad/s. If we write both fields using cosines, then we have

E=E,cos(k-r—wt)and B =B, cos(k-r — wt).

Then S = c?¢,E, x B, cos?(k - r — wt). Typical optical detectors cannot respond this fast to see
the actual wave function, so we need to consider the time average of these types of functions.
Therefore, optical detectors give an output that measures (|S|), the time average of the magnitude
of the Poynting vector. Let’s see how we average harmonic functions. We define the time average
of a function as
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If we use e‘“t as our function, we can get sine of cosine averages out of it. Therefore,
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Because e'“t = cos wt + i sin wt, we now know that

wT wT
(cos wt) = cos wt <sinc (7)) and (sin wt); = sin wt <sinc (7))

We need to look at the three cases when wT > 1 =T > % > t = period of wave. Here then
(ei(‘)t)T == 0

. wT
fwlT K1 =T<K % « 1, then SIZ—TZ — 1 and the average value is just the value of the function

2
at that point. Finally, if wT = 2mr, (e'®t); = 0. As part of one of your homework assignments,
you will show that

1
(cos? wt)p = 2 [1 + sinc wT cos 2wt]
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In optics, we usually refer to the time-averaged Poynting vector as the irradiance. It is the same
as intensity when general EM waves are considered. Therefore,

c?e,

(ISI)r = c?€,|E, X B,|{cos? K r — wt); = 5

|E, X B,| for oT > 1.

Finally,
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What is the expression for the electric field of a HeNe laser operating at 1 mW? Calculate B as
well. We will use a beacm diameter of 1 mm with a wavelength of 633 nm. We write the electric

field as
E = Eoei(kz_wt).
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1/2

2(1.3 x 1073)
(3 x 108)(8.85 x 10-12)
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Then
E, 6
302723.3X10_T

21
k = - = 9.9 x 10°m™! and w = 3 X 10'° rad/s

Therefore, our wave is
E = 980 g ei(9:9x10°z-3x10"5¢) V/m
and
B=33x10"°y 01(9.9x1062-3x10%5t)

In a material such as glass, the irradiance takes on a slightly different to account for being in a
material instead of a vacuum. The expression becomes

I = ev(E?);

Recall that v = % = Amvm. but Vm = Vyac and — = L- Therefore, /1m = )Ll:w'

Avac NaAm

We are now in a position to understand why the amplitude in a spherical wave must vary as (1/r).
Because the energy is conserved in the wave, and the area of a sphere increases as r?, the product
of the surface area and the irradiance must be constant. Similarly, for the cylindrical wave, the

. . 1
surface area varies as r, so the amplitude of the wave must vary as 7

NEXT TIME: Boundary conditions, Fresnel coefficients (reflection and transmission coefficients),
and their applications



