Physics 3312 Lecture 8 February 11, 2019

LAST TIME: Aberration function, reducing spherical aberration, Seidel aberrations, introduction
to waves

Before we continue our study of waves, I told you we would have a look at some of the aberrations
and how they relate to the equations that we wrote. We have also discussed the role of mirrors in
optical systems, so before we start to look at some of the aberrations, I want to show you some
interesting ways of using mirrors.

Do you recall some of the advantages and
disadvantages of mirrors in optical systems?
Suppose we want to collect as much light as we
can from a source. Using an ordinary lens, we
will intercept only a small portion of the light that
is available. Consider the following ellipsoidal
mirror. Notice how much more light we collect
using this mirror. Here is a short video that shows
this great efficiency on a smaller scale. Show
video disc 22 ch 28 videos 03 and 04.

Now let’s return to our Seidel aberrations and look at some of the actual aberrations to see how
their behavior compares with what we had. Recall the Seidel aberrations are given by the
following equation.
a(Q) = Chor*+ 1C31h' 13 cosO+ ,Cp0h"%1r%cos20 + ,Cy0h"%r?
+ 3Ch"3rcos 6.

First term is spherical aberration — no angular dependence
Second term is coma

Third term is astigmatism

Fourth term is curvature of field

Fifth term is distortion

Here are some figures that show some of these aberrations.
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Show disc 22 chap 60 lenses.

There are also some good figures in your textbook that might be useful.



Let’s resume our study of waves. We saw that a traveling wave in one dimension could be
represented by a wave function of the form given by

P, t) = fx £ vt).

You will finish as homework the calculation I started and show that the one-dimensional wave
equation is given by
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This equation is know as the one-dimensional wave equation without energy loss. This equation
is a second order, linear partial differential equation. Second order refers to the highest order
derivative occuring in the equation, and linear means that no cross terms of the function with itself
or its derivatives occurs. For equations that are linear, the sum of any solutions is also a solution
to the equation. Note that this is a homogeneous partial differential equation; i.e., there is no source
term on the right hand side. The most useful form of a wave to consider for our purposes in this
course is the harmonic wave given by

Y(x,0) = Asinkx = f(x).

This means that our traveling wave has the form ¥ (x, t) = Asink(x + vt) = f(x £+ vt). Because
sine functions are repetitive, we know that there is some distance over which the wave repeats
itself. Let’s see what that distance is.

Y(x + A, t) = Asin[k(x + 1) + kvt] = Asin(k(x £ vt) + k).

We know that the sine function is periodic 27, so kA = 2m and k = 27" k is called the propagation

number and A is the spatial period or wavelength. There is also a temporal period and a frequency
to go along with it.
Y(x,t) =yY(x,t+1) = sink(x —vt) =sink[x —v(t + 1)]

Therefore, sin(kx — kvt) = sin(kx — kvt + kvt). This means that kvt = 2w = 27"177, SO

pl . . .
v=-= Av, where v is the temporal frequency measured in Hertz. It is customary to define an
angular frequency w given by w = 2mv, measured in radians per second. We also find it useful to
define k = % = wave number or spatial frequency. It has units of inverse length. Finally, we

usually write our periodic wave function as ¥(x,t) = Asin(kx + wt).  (kx + wt) is called the
phase of the wave. When k, w, and t are constant, x = constant implies a place parallel to y-z. This

is called a plane wave because the surface of constant phase are planes. Notice that x and t may

dx w

change with the phase remaining constant. Then we find k dx + wdt = 0. T Ww=v=o

For a typical light wave in the middle of the visible spectrum, let’s get some idea of the size of
some of these numbers. Set A = 550 nmanduse v = ¢ = 3 x 108 ? Therefore,

8
= —553011100_9 = 5.45 x 10'* Hz. This gives a period of 1.83 X 1075 s. @=3.42 x 105 rad/s.



k=1.14x10"m . x=1.80 % 10°m™1
Recall that because the wave equation is linear, we may add two solutions to get another solution.

¢(x; t) = Il’l(x» t) + ¢2(xr t)

This is the superposition principle and forms the basis for much of what we are able to do in
physics. Interference, diffraction, and polarization all rely on this principle. However, rather than
try to add sines and cosines, it is much easier to work with the complex form of a wave. We use
the representation given by

e = cosf +isinf® = cos@ = Re e'?,

We may then write Y(x, t) = Re [Ae' @] or just P (x, t) = Ae'(@t-k¥*+€) Here
wt — kx + € is the phase of the wave, and € is the phase constant. Reminder

Z=re'® =rcos@ +irsinf =x+iy
The complex conjugate of Z is designated as Z* = (x + iy)* = x — iy. Therefore
Z+z"=2x=2Rezandz—Zz* =2iy=2ilm2Z.
r =zl =/(z2),

72 = (x +iy)(x + iy) = x? — y? + 2ixy.

Recall further that

but

Adding waves is mostly about keeping track of phase. An easy
way to represent addition of waves is by the use of phasors. A
phasor is just a vector whose angle represents the phase of the
wave relative to another wave. For example, if we wish to
represent the addition of three waves, here is how it works. The
use of phasors will become more evident when we deal with
interference and diffraction.

So far, we have considered only waves whose direction of propagation ~ ®

was along a coordinate axis. How do we deal with waves that //”\\\
propggate om am arbltr'ar}.l direction? Here is a figure from your text P /u
that illustrates how this is done. Remember that a plane may be : )

represented by a vector whose direction is perpendicular to the plane.

(r—-r,)-k=0= Kk-r = const

We may then write
l/)(x, t) — Aei(k-r?wt)

NEXT TIME: Spherical waves, cylindrical waves, and Maxwell’s equations
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