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Physics 3312                                               Lecture 4                                                January 28, 2019 
 
LAST TIME: Types of lenses, sign conventions, magnification, multiple lenses, ray tracing 
 

We should note that the determinant of each of these matrices is 1.  det࣬ ൌ det ቂ1 െܦ
0 1

ቃ ൌ 1 

detT = det ቈ
1 0
ௗ

௡
1቉ ൌ 1.  These two conditions imply that det A =1 as well.  Do you remember 

why? 
 
We need to consider one last issue before we look at some other topics in chapter 5.  Where do 
off-axis rays focus?  Here is how the matrices look. 
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If ݕ௢ ൌ 0, ௜ߙ ൌ ௜ݕ	and	௢ߙ ൌ ,௢ݕ For any other		௜.ݏ௢ߙ ௜ߙ

ᇱ ൌ ௢ߙ െ
௬೚
௙
	and	ݕ௜

ᇱ ൌ ௜ݏ௢ߙ ൅ ௢ݕ െ
௬೚௦೔
௙
.   

 
We want to know the value of ݏ௜	such	that	ݕ௜

ᇱ ൌ  ௜.  (The two parallel rays match.)ݕ
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௜ݏ௢ߙ െ ௢ݕ ൌ ௢ߙ௜ݏ െ ௜ݏ
௢ݕ
݂
⟹ ௜ݏ ൌ ݂. 

 
Here is a figure to illustrate what we have proved for small 
angles.  The two parallel rays come together at the focal 
plane even if they are not parallel to the optical axis.   
 
 
Prisms usually are considered as either reflecting or 
dispersing.  We have already discussed reflecting prisms to 
some degree and have seen that they are based on total 
internal reflection, but what is dispersion?  Dispersion is the dependence of the index of refraction 
n on the wavelength  (color).  In other words, ݊ ൌ ݊ሺߣሻ.		 
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Consider reflecting prisms first.  Recall our earlier discussion where the 
critical angle for total internal reflection occurs when we go from a 
material has an index of refraction larger than the material into which it 
transmits.  We found that ߠ௖ ൌ sinିଵ ௡೟

௡೔
	with	݊௧ ൏ ݊௜.  ߠ௖	for a glass –air 

interface is about 41.8o.  There prisms are usually used whenever we want 
to redirect light without much loss in intensity.  See text for more 
information. 
 
Dispersing prisms use the dependence of the refractive index on 
wavelength for their operation.  Here is a rough sketch of how that 
dependence looks in the visible region (400 nm to 700 nm).  Rainbows 
depend on this and reflection.  Here is a figure that shows how 
polychromatic light is dispersed on an equilateral triangular prism. 

We may give an empirical 
equation, Cauchy equation, 
to describe this dependence 
by the equation 
 

݊ ൌ ଵܥ ൅
ଶܥ
ଶߣ
൅
ଷܥ
ସߣ
൅ ⋯ 

The larger the variation in the index of refractive index, the more the dispersion.  Highly dispersive 
prisms are used in prism spectrometers, devices to study the wavelength dependence of the 
refractive index in materials.  Such studies are useful in characterizing materials.  We will say 
more about these topics when we get to the EM theory. 
 
Optical fibers 
 
Here is the ray optic description of who they work. 
 

݊௜ sin ௜ߠ ൌ ݊௧ sin  ௧ߠ
 

݊௜ sin ௜ߠ ൌ ݊௙ sin  ௧ߠ
At the core-cladding boundary, we apply Snell’s law 
again. 

݊௙ sinሺ90௢ െ ௧ሻߠ ൌ ݊௖௟ sin ௧௖௟ߠ ⟹ ݊௙ cos ௧ߠ ൌ݊௖௟	݂݅	ߠ௧௖௟ ൌ 90଴ 
 
We wish to know the maximum ߠ௜	for TIR at the core-cladding interface. 
Therefore, 

݊௜ sin ୫ୟ୶ߠ ൌ ݊௙ sin ௧ߠ 	with
݊௖௟
݊௙

ൌ cos  ௧ߠ

 

ሺ݊௜ sin ୫ୟ୶ሻଶߠ ൌ ൫݊௙ sin ௧൯ߠ
ଶ
⟹ ݊௜

ଶ sinଶ ୫ୟ୶ߠ ൌ ݊௙
ଶሺ1 െ cosଶ  .௧ሻߠ

 

Finally, ݊௜
ଶ sinଶ ୫ୟ୶ߠ ൌ ݊௙

ଶ ቆ1 െ ൬
௡೎೗
௡೑
൰
ଶ

ቇ ൌ ݊௙
ଶ െ ݊௖௟

ଶ 	and	݊௜ sin ୫ୟ୶ߠ ൌ ൣ݊௙
ଶ െ ݊௖௟

ଶ ൧
భ
మ. 
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݊௜ sin  ୫ୟ୶ is usually called the numerical aperture NA of the fiber and is the maximum angle atߠ
which light can enter and still remain in the fiber by TIR. 
 
A second important parameter of the optical fiber is the attenuation per length or energy loss per 
length as the light transmits along the fiber. 
 

଴ܲ

௜ܲ
ൌ 10ିఈ௅/ଵ଴ 

so that 

log ଴ܲ

௜ܲ
ൌ
െܮߙ
10

	and	ߙ ൌ െ
10
ܮ
log ଴ܲ

௜ܲ
. 

If 
௉బ
௉೔
ൌ 0.5 in 1 kilometer, 

ߙ ൌ െ
10
1	km

log 0.5 ൌ െ10ሺെ0.301ሻ ൌ 3
dB
km

. 

 
The first optical fibers that achieved an attenuation of less than 20 dB/km were made back in the 
early 1970s and that really started the communications revolution.  The two primary mechanisms 
for energy loss are scattering and absorption.  Rayleigh scattering is proportional to 1/4, so the 
push initially was to create communication systems with longer wavelengths.  Absorption was 
primarily caused by the OH ion, so eliminating impurities in the fibers was critical.  Present fibers 
can be made with attenuation of 0.1 dB/km. 
 
The last major consideration in making an 
optical fiber is dispersion, but this dispersion is 
primarily what is known as intermodal 
dispersion.  In the ray picture, each ray 
propagating at a different angle in the fiber 
really represents a mode in the fiber in the wave 
picture.  Rays that travel along the center of the 
fiber reach the end of the fiber before those that 
travel at larger angles in the fiber as shown in 
the figure.  Your text shows that this dispersion 
measured in time is approximately given by 
 

ݐ∆ ൌ
௙݊ܮ
ܿ
൬
݊௙
݊௖௟

െ 1൰ 

 
The need for a cladding around the fiber is clear when you consider what happens if the core is 
surrounded by air.  Then, 

ݐ∆ ൌ
1ሺ1.5ሻ

3 ൈ 10଼
൬
1.5
1
െ 1൰ ൌ

ሺ2 ൈ 10ିଽሻs
m

ൌ
ሺ2 ൈ 10ି଺ሻs

km
. 

 
This means that a pulse will spread out in time 2 microseconds every kilometer it travels.  In 2 
microseconds, light travels a distance 2 ൈ 10ି଺ሺ3 ൈ 10଼ሻ ൌ 600	m.		You cannot propogate any 
decent signal speed with this arrangement. 
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This means we must make the cladding and core have indices of refraction quite close.  This limits 
the numerical aperture but improves the rate at which digital signals can be sent along the fiber 
without overlapping one another.  See your text on pages 199 – 200 for more information.  
Elaborate a bit on this idea. 
 
Thick lenses – The figure to the right shows our situation with a thick 
lens.  We no longer set d = 0 in our transfer equation, so here is the 
matrix multiplication to get the system matrix for the thick lens case 
with the lens assumed to be in air. 
 

A21 = ࣬ଶ T21 ࣬ଵ ൌ ቂ1 െܦଶ
0 1

ቃ ቈ
1 0
ௗ೗
௡೗

1቉ ቂ
1 െܦଵ
0 1

ቃ 

 

ܦ ൌ
݊௧ െ ݊௜
ܴ

ଵܦ	⟹ ൌ
݊௟ െ 1
ܴଵ

	and	ܦଶ ൌ
1 െ ݊௟
ܴଶ

 

 
For this case, ths system matrix becomes 
 

ۏ
ێ
ێ
ێ
1ۍ െ

ଶ݀௟ܦ
݊௟

ଶܦଵܦ
݀௟
݊௟
െ ଵܦ െ ଶܦ

݀௟
݊௟

1 െ
ଵ݀௟ܦ
݊௟ ے

ۑ
ۑ
ۑ
ې
 

 
We could create the object-image 
matrix and apply the imaging 
condition, but this approach does not 
yield any simple results.  There is a 
much better way to deal with thick 
lenses.  As you recall, with thin lenses, 
we assumed that the refraction was 
concentrated at the middle of the lens.  
This is not possible to do with thick 
lenses, but it is possible to find two 
points where the refraction at each surface seems to take place  Here is a figure to illustrate this 
idea.  Let’s identify Fo and Fi and F1 and F2 since everything else is in terms of 1 and 2.  
Furthermore, make the following assignments. 
 
V1H1 = h1     F1H1 = f1     V2H2 = h2     F2H2 = f2     xo = F1V1     xf = F2V2. 
 
Therefore, f1 = xo + h1 and f2 = xf + h2.  Let’s start a ray from F1 at angle o and see what happens 
to it using our matrix approach.  Transfer the ray to V1. 
 

ro	ൌ ቂ
௢ߙ
0 ቃ  
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ro′ = ൤
1 0
௢ݔ 1൨ ቂ

௢ߙ
0 ቃ ൌ ቂ

௢ߙ
௢ݔ௢ߙ

ቃ ൌ ቂ
௢ߙ
௢ݕ
ቃ ⟹ ௢ݕ ൌ  ௢ݔ௢ߙ

 
 
Now consider the final ray that is given by 
 

rf = ൤
0
௙ݕ
൨ ൌ ቂ

ܽଵଵ ܽଵଶ
ܽଶଵ ܽଶଶ

ቃ ቂ
௢ߙ
௢ݕ
ቃ ൌ ቂ

ܽଵଵߙ௢ ൅ ܽଵଶݕ௢
ܽଶଵߙ௢ ൅ ܽଶଶݕ௢

ቃ. 

 
Therefore, 0 ൌ ܽଵଵߙ௢ ൅ ܽଵଶݕ௢	and	ݕ௙ ൌ ܽଶଵߙ௢ ൅ ܽଶଶݕ௢. 
 

But ଵ݂ ൌ
௬೑
ఈ೚
ൌ ௔మభఈ೚ା௔మమ௬೚

ఈ೚
	and	ݕ௢ ൌ െ௔భభఈ೚

௔భమ
	so	 ଵ݂ ൌ

௔మభఈ೚
ఈ೚

െ ௔మమ௔భభఈ೚
௔భమఈ೚

 

 

Finally, ଵ݂ ൌ െ ௔భభ௔మమି௔మభ௔భమ
௔భమ

ൌ െ ଵ

௔భమ
 

 
Now notice that we may also obtain ݄ଵ	and	݄ଶ in terms of the elements of the system matrix. 
 

݄ଵ ൌ ଵ݂ െ ௢ݔ ൌ െ
1
ܽଵଶ

െ
௢ݕ
௢ߙ

ൌ െ
1
ܽଵଶ

െ െ
ܽଵଵ
ܽଵଶ

ൌ
1 െ ܽଵଵ
െܽଵଶ

.		 

 
Similarly, 

݄ଶ ൌ
ܽଶଶ െ 1
െܽଵଶ

 

 
NEXT TIME:  What all this means and examples. 


