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Physics 3312                                               Lecture 2                                                January 16, 2019 
 
LAST TIME: Motivation for optics, Fermat’s principle, Snell’s law, law of reflection, and 
applications 
 
Recall that flat surfaces serve as redirectors of light.  
Curved surfaces, however, can change diverging light 
rays to converging and vice versa, so they can form 
images.  The figure to the right shows this effect.  If P is 
an image of S, then our eye would not detect any 
difference between S and P, except maybe the size.  A lens 
is a refracting device that reconfigures the energy.  The 
easiest curved surface to make and to treat theoretically is the spherical surface, so we will 
concentrate mostly on these surfaces.  Aspherical surfaces, such as ellipses and hyperbolas, are 
usually used to convert point sources into collimated beams or collimated beams into point sources.  
See your text for a brief discussion of these.  Before we get too far along in our discussion of 
lenses, let me make some general comments that will be important as we develop our treatment of 
imaging.  We have already seen that refraction is inherently a nonlinear process.  Ultimately, this 
means that it is not possible to take a planar object and transform it into planar image using a 
nonlinear process.  After all, planes are represented by linear relationships.  To make reasonable 
progress in imaging with computational power, we will have to make approximations. 
 
One interesting device is the Cartesian oval of 
revolution.  Here is a figure that shows how it works.  
For S' to be an image of S, the optical paths along the 
optical axis and any other path must be equal.  
Therefore, ݊௜ݏ௢ ൅ ݊௧ݏ௜ ൌ ݊௜݈௢ ൅ ݊௧݈௜.	  ݈௢	and	݈௜ 
may also be written in terms of the arbitrary point 
(x,y) shown in the figure as 

݈௢ ൌ ሾሺݏ௢ ൅ ሻଶݔ ൅  ଶሿଵ/ଶݕ
and 	

݈௜ ൌ ሾሺݏ௜ െ ሻଶݔ ൅  .ଶሿଵ/ଶݕ
 
If we substitute these values for ݈௢	and	݈௜	into the previous equation, we obtain an equation for the 
surface.  The problem is that the shape of the surface depends on ݏ௢	and	ݏ௜.		Furthermore, if ݏ௢	is 
not located on the optical axis, the shape of the surface is also changes.  This situation is further 
evidence that our earlier notion that it is not possible to transform a plane into another plane with 
a nonlinear transformation. 
 
Let’s look now at Snell’s law applied to a spherical 
surface.  The figure to the right shows a ray originating at 
S and focusing at P.  This figure is similar to the one above, 
but the surface here is specified to be spherical.  The 
optical length OPL is given by 
 

ܮܱܲ ൌ ݊௜݈௢ ൅ ݊௧݈௜. 
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Our objective here is to determine the variation of the optical path length as ߶	varies.  We calculate 
the derivative with respect to ߶,	set it equal to zero, and see what Fermat’s principle gives us.  We 
use the law of cosines to determine ݈௢	and	݈௜.		Then the OPL is given by 
 

ܮܱܲ ൌ ݊௜ሾܴଶ ൅ ሺݏ௢ ൅ ܴሻଶ െ 2ܴሺݏ௢ ൅ ܴሻ cos߶ሿଵ/ଶ

൅ ݊௜ሾܴଶ ൅ ሺݏ௜ െ ܴሻଶ ൅ 2ܴሺݏ௜ െ ܴሻ cos߶ሿଵ/ଶ 
 

We calculate 
ௗሺை௉௅ሻ

ௗథ
	and set it equal to zero to obtain 

݊௜
݈௢
൅
݊௧
݈௜
ൌ
1
ܴ
൬
݊௧ݏ௜
݈௜

െ
݊௜ݏ௢
݈௢

൰. 

 
Although this equation is exact, it is not easy to use because we must always know where the ray 
strikes the surface to use it to determine ݏ௜	if we know ݏ௢.		We make some headway if we let 
߶ ≪ 1 so that cos߶ ≅ 1	and ݏ௢ ≅ ݈௢	and	ݏ௜ ≅ ݈௜.		Under these approximations, our equation 
simplifies to 

݊௜
௢ݏ
൅
݊௧
௜ݏ
ൌ
݊௧ െ ݊௜
ܴ

. 

 
The small angle approximation tells us that we could have started with the linearized version of 
Snell’s law given by 

݊௜ߠ௜ ≅ ݊௧ߠ௧.		 
 
I will have you do this calculation as homework.  This result is not particularly useful because it 
assumes light is incident onto a semi-infinite medium.  We need to modify the equation so we may 
put a second spherical surface and make a lens.  Before we do so, however, let’s make some 

definitions concerning the equation above.  When ݏ௜ → ∞, ௢ݏ ൌ ௢݂,	so we have	 ௢݂ ൌ
௡೔ோ

௡೟ି௡೔
,	 

where ௢݂	is called the object focal length.  Similarly,	ݏ௢ → ∞, ௜ݏ ൌ ௜݂,	so we have	 ௜݂ ൌ
௡೟ோ

௡೟ି௡೔
, 

where ௜݂ 	is the image focal length. 
 
Let’s look again at our spherical surface and introduce 
some new angles that are more accessible than 
 as shown in	௧ߙ	and	௜ߙ We call these angles		௧.ߠ	and	௜ߠ
the figure.  ߠ௜ ൌ ௜ߙ ൅ 	߶ and ߶ ൌ ௧ߠ െ  ௧ߙ Note that		௧.ߙ
is negative because it is below the horizontal.  Therefore, 

݊௜ሺߙ௜ ൅ 	߶ሻ ൌ ݊௧ሺߙ௧ ൅ 	߶ሻ 
and 

݊௧ߙ௧ ൌ ݊௜ߙ௜ െ ሺ݊௧ െ ݊௜ሻ	߶ ൌ ݊௜ߙ௜ െ ሺ݊௧ െ ݊௜ሻ
௜ݕ
ܴ
, 

where we set ݄ ൌ ܦ ௜.  Defineݕ ൌ ௡೟ି௡೔
ோ

ൌ refractive	power.  Of course ݕ௧ ൌ  ௜.  Refraction doesݕ

not change the location of the ray with respect to the optical axis, but does change the angle.  These 
results may be summarized neatly using matrices as follows. 
 

ቂ
݊௧ߙ௧
௧ݕ

ቃ ൌ ቂ1 െܦ
0 1

ቃ ቂ
݊௜ߙ௜
௜ݕ

ቃ. 
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Define ࣬ ൌ ቂ1 െܦ
0 1

ቃ	as the refraction matrix and ቂ
ߙ݊
ݕ ቃ	as the ray 

vector.  ࣬	tells us what happens as as ray is refracted at a surface.  
The next step in making a lens is to transfer or translate the ray to the 
next surface.  The figure to the right shows this step.  There is no 
refraction, so ݊ ௟ߙ	remains constant.  However, ݕ௧ଶ ൌ ௜ଵݕ ൅  To		ଶଵ.݀ߙ
give these results, the matrix form is given by 
 

ቂ
݊௟ߙ
௧ଶݕ

ቃ ൌ ൥
1 0
݀ଶଵ
݊௟

1൩ ቂ
݊௟ߙ
௧ଵݕ

ቃ. 

We define the transfer matrix as 

T = ቈ
1 0
ௗ

௡
1቉. 

 
This ray will undergo another refraction at the second surface with the refraction matrix given by 
 

࣬ଶ ൌ ቂ1 െܦଶ
0 1

ቃ 		with	ܦଶ ൌ
݊௧ െ ݊௟
ܴଶ

. 

 
Therefore, to refract a ray at the first surface, transfer it to the second surface, and refract it at the 
second surface requires us to multiply three matrices with the result given by ࣬ଶT21࣬ଵ.  This 
matrix is called the system matrix, usually designated by A21.  Because matrix multiplication is not 
commutative, the matrices are thought of as progressing from right to left instead of left to right.  
Before we begin to use these matrices to obtain useful results, let’s quickly review matrix 

multiplication.  Consider matrix ܣിൌ ൤
ଵଵܣ ଵଶܣ
ଶଵܣ ଶଶܣ

൨ 	and	matrix	ܤി ൌ ൤
ଵଵܤ ଵଶܤ
ଶଵܤ ଶଶܤ

൨.  The matrix 

multiplication is given by 
 

൤
ଵଵܣ ଵଶܣ
ଶଵܣ ଶଶܣ

൨ ൤
ଵଵܤ ଵଶܤ
ଶଵܤ ଶଶܤ

൨ ൌ ൤
ଵଵܤଵଵܣ ൅ ଶଵܤଵଶܣ ଵଶܤଵଵܣ ൅ ଶଶܤଵଶܣ
ଵଵܤଶଵܣ ൅ ଶଵܤଶଶܣ ଵଶܤଶଵܣ ൅ ଶଶܤଶଶܣ

൨.		 

 
The mulitplication may also be written in subscripted notation as Cij = Aik Bkj.  The Einstein 
summation convention is understood; that is, repeated indices are summed.  Written in this form, 
it is exactly like the matrix multiplication.  However, notice that it is also acceptable to write 
Cij = Bkj Aik because the elements of the matrices do commute.  This is not, however, matrix 
multiplication.  Now, C11 = B11A11+B21A12, C12 = B12A11+B22A12, C21 = B11A21+B21A22, and 
C22 = B12A21+B22A22.  This method is much harder to keep track of the summation because it does 
NOT follow traditional matrix multiplication. 
 
Let’s look at how this process works for thin lenses.  For thin lenses, ݀ ଶଵ ≅ 0,	so the system matrix 
is given by 

A21ൌ ࣬ଶ	T21 ࣬ଵ ൌ ቂ1 െܦଵ
0 1

ቃ ቂ1 0
0 1

ቃ ቂ1 െܦଶ
0 1

ቃ ൌ ቂ1 െܦ
0 1

ቃ 	with	ܦ ൌ ଵܦ ൅  	.ଶܦ

 
The system matrix only gets us from the first surface in the optical system to the last surface in the 
optical system.  How do we determine the equation for creating an image of na object? 
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Suppose we place a point object a distance ݏ௢	from the first surface of the optical system.  We wish 
to know where the image of that object is formed; i.e., what is ݏ௜?		In order to determine this, we 
must transfer the object to the first surface of the optical system and then transfer the output ray 
from the last surface to the final image location.  In this process, we must also define what we 
mean by the image location.  Here is the mathematics. 
 

ቂ
݊௜ߙ௜
௜ݕ

ቃ ൌ ൥
1 0
௜ݏ
݊௜

1൩ ቂ
1 െܦ
0 1

ቃ ൥
1 0
௢ݏ
݊௢

1൩ ቂ
݊௢ߙ௢
௢ݕ

ቃ. 

 
Notice that the equations are best read from the right to the left.  We have the object ray vector, 
then the transfer to the system, and finally the transfer to the image location.  The result, using 
step-by-step matrix multiplication, is given by 
 

ቂ
݊௜ߙ௜
௜ݕ

ቃ ൌ ൥
1 െܦ
௜ݏ
݊௜

െܦ ൬
௜ݏ
݊௜
൰ ൅ 1൩ ൥

1 0
௢ݏ
݊௢

1൩ ቂ
݊௢ߙ௢
௢ݕ

ቃ

ൌ

ۏ
ێ
ێ
ێ
ۍ 1 െ ܦ ൬

௢ݏ
݊௢
൰ െܦ

൬
௜ݏ
݊௜
൰ ൅ ൬

௢ݏ
݊௢
൰൭1 െ ܦ ൬

௜ݏ
݊௜
൰൱ 1 െ ܦ ൬

௜ݏ
݊௜
൰
ے
ۑ
ۑ
ۑ
ې

ቂ
݊௢ߙ௢
௢ݕ

ቃ. 

 
Let’s call this large matrix the object-image matrix because it does relate the object and image 
distances, so 

ࣩ ൌ

ۏ
ێ
ێ
ێ
ۍ 1 െ ܦ ൬

௢ݏ
݊௢
൰ െܦ

൬
௜ݏ
݊௜
൰ ൅ ൬

௢ݏ
݊௢
൰ ൭1 െ ܦ ൬

௜ݏ
݊௜
൰൱ 1 െ ܦ ൬

௜ݏ
݊௜
൰
ے
ۑ
ۑ
ۑ
ې

ൌ ൤ ଵࣩଵ ଵࣩଶ
ࣩଶଵ ࣩଶଶ

൨.		 

 
Let’s connect the object ray and image ray by the object-image matrix in generic terms to see how 
we might define the image location. 
 

ቂ
݊௜ߙ௜
௜ݕ

ቃ ൌ ൤ ଵࣩଵ ଵࣩଶ
ࣩଶଵ ࣩଶଶ

൨ ቂ
݊௢ߙ௢
௢ݕ

ቃ ൌ ൤ ଵࣩଵ݊௢ߙ௢ ൅ ଵࣩଶݕ௢
ࣩଶଵ݊௢ߙ௢ ൅ ࣩଶଶݕ௢

൨ 

Finally, 
݊௜ߙ௜ ൌ ଵࣩଵ݊௢ߙ௢ ൅ ଵࣩଶݕ௢		and	ݕ௜ ൌ ࣩଶଵ݊௢ߙ௢ ൅ ࣩଶଶݕ௢. 

 
If something is an image, then the height of the image ݕ௜	cannot depend on the angle ߙ௢	at which 
the object ray left; i. e., ݕ௜ ് ௢ሻ.  This means that the imaging condition is given by ࣩଶଵߙ௜ሺݕ ൌ
0‼			For our specific case here, then, we have 

൬
௜ݏ
݊௜
൰ ൅ ൬

௢ݏ
݊௢
൰ ൭1 െ ܦ ൬

௜ݏ
݊௜
൰൱ ൌ 0 

 
 



5 
 

Let’s keep the lens in the same environment (air) on both sides so that ݊௢ ൌ ݊௜ ൌ ݊௠.	 Then we 
obtain 

൬
௜ݏ
݊௠

൰ ൅ ൬
௢ݏ
݊௠

൰ ൌ ܦ ൬
௢ݏ
݊௠

൰ ൬
௜ݏ
݊௠

൰.		 

 
Set ݊௠ ൌ 1	and divide by ݏ௜ݏ௢	to obtain 
 

1
௢ݏ
൅
1
௜ݏ
ൌ ܦ ൌ

݊௟ െ 1
ܴଵ

൅
1 െ ݊௟
ܴଶ

ൌ ሺ݊௟ െ 1ሻ ൬
1
ܴଵ

െ
1
ܴଶ
൰ ൌ

1

௢݂
ൌ
1

௜݂
ൌ
1
݂
. 

 
This gives us the thin lens equation and the lens-maker’s equation all at once.  This equation will 
be easily modified when we wish to obtain similar equations for systems of lenses that may be 
thick. 
 
NEXT TIME:  Sign conventions, applications of the thins lens and lens-maker’s equations, and 
types of lenses 


