Physics 3312 Lecture 2 January 16, 2019

LAST TIME: Motivation for optics, Fermat’s principle, Snell’s law, law of reflection, and
applications

Recall that flat surfaces serve as redirectors of light.
Curved surfaces, however, can change diverging light

rays to converging and vice versa, so they can form S
images. The figure to the right shows this effect. If P is

an image of S, then our eye would not detect any
difference between S and P, except maybe the size. A lens

is a refracting device that reconfigures the energy. The
easiest curved surface to make and to treat theoretically is the spherical surface, so we will
concentrate mostly on these surfaces. Aspherical surfaces, such as ellipses and hyperbolas, are
usually used to convert point sources into collimated beams or collimated beams into point sources.
See your text for a brief discussion of these. Before we get too far along in our discussion of
lenses, let me make some general comments that will be important as we develop our treatment of
imaging. We have already seen that refraction is inherently a nonlinear process. Ultimately, this
means that it is not possible to take a planar object and transform it into planar image using a
nonlinear process. After all, planes are represented by linear relationships. To make reasonable
progress in imaging with computational power, we will have to make approximations.

One interesting device is the Cartesian oval of
revolution. Here is a figure that shows how it works.
For S' to be an image of S, the optical paths along the
optical axis and any other path must be equal.
Therefore, n;s, +n.s; = n;l, + ngl;. l,and l; -.
may also be written in terms of the arbitrary point '
(x,y) shown in the figure as
lo = [(so +x)* + y?]'/2

and
L = [(s; —0)* + y*]*/2

If we substitute these values for [, and [; into the previous equation, we obtain an equation for the
surface. The problem is that the shape of the surface depends on s, and s;. Furthermore, if s, is
not located on the optical axis, the shape of the surface is also changes. This situation is further
evidence that our earlier notion that it is not possible to transform a plane into another plane with
a nonlinear transformation.

Let’s look now at Snell’s law applied to a spherical
surface. The figure to the right shows a ray originating at

S and focusing at P. This figure is similar to the one above,

but the surface here is specified to be spherical. The .
optical length OPL is given by

OPL = Tll'lo + Tltli.



Our objective here is to determine the variation of the optical path length as ¢ varies. We calculate
the derivative with respect to ¢, set it equal to zero, and see what Fermat’s principle gives us. We
use the law of cosines to determine [, and [;. Then the OPL is given by

OPL = n;[R? + (s, + R)?> — 2R(s, + R) cos ¢]*/?
+n;[R? + (s; — R)?> + 2R(s; — R) cos ¢]*/?

We calculate %ﬁ;” and set it equal to zero to obtain

n; ng 1(ntsl- nl-so)
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Although this equation is exact, it is not easy to use because we must always know where the ray
strikes the surface to use it to determine s; if we know s,. We make some headway if we let
¢ <1 so that cos¢p = 1and s, = [, and s; = [;. Under these approximations, our equation
simplifies to

ng Ny Ng—n
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The small angle approximation tells us that we could have started with the linearized version of
Snell’s law given by
n;0; = n.0;.

I will have you do this calculation as homework. This result is not particularly useful because it
assumes light is incident onto a semi-infinite medium. We need to modify the equation so we may
put a second spherical surface and make a lens. Before we do so, however, let’s make some

. e . . ‘R
definitions concerning the equation above. When s; = oo, s, = f,, S0 we have f, = nnln,
t— 1
. . .. R
where f, is called the object focal length. Similarly, s, - o, s; = f;, S0 we have f; = %
t— 1

where f; is the image focal length.

Let’s look again at our spherical surface and introduce
some new angles that are more accessible than
0; and 8,. We call these angles «; and a; as shown in
the figure. 8, = a; + ¢ and ¢ = 6, — a;. Note that a;
IS negative because it is below the horizontal. Therefore,

ni(a; + @) =n(a; + ¢)

and
y.
neay = iy — (ny — ) ¢ = myay — (ng —my) EL
where we set h = y;. Define D = ™= = refractive power. Of course y, = y;. Refraction does

not change the location of the ray with respect to the optical axis, but does change the angle. These
results may be summarized neatly using matrices as follows.
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Define R = [O 1 ]as the refraction matrix and [ y ] as the ray

vector. R tells us what happens as as ray is refracted at a surface.
The next step in making a lens is to transfer or translate the ray to the
next surface. The figure to the right shows this step. There is no
refraction, so n;« remains constant. However, y,, = y;; + ad,;. To
give these results, the matrix form is given by

Yi2 — 1|lyu
n;

- 1 0
J = g 1 .
n

This ray will undergo another refraction at the second surface with the refraction matrix given by

iy [d; 0] ey

We define the transfer matrix as

ng —mn
R, °

R, = [(1) _52] with D, =

Therefore, to refract a ray at the first surface, transfer it to the second surface, and refract it at the
second surface requires us to multiply three matrices with the result given by R,921R,. This
matrix is called the system matrix, usually designated by 1. Because matrix multiplication is not
commutative, the matrices are thought of as progressing from right to left instead of left to right.
Before we begin to use these matrices to obtain useful results, let’s quickly review matrix

A o B B )
12] and matrix B = [Bn 12]. The matrix
21

. A
multiplication. Consider matrix A =[ 1
P Ay Ay By,

multiplication is given by

A A12] By, Blz] _ [A11B11 + 412821 Aq1By, +A12322]
A1 Az2l1Bz1 By Az1B11 + AzaByy Az1Bip + ApaBoal

The mulitplication may also be written in subscripted notation as Cij = Ak Bxj. The Einstein
summation convention is understood; that is, repeated indices are summed. Written in this form,
it is exactly like the matrix multiplication. However, notice that it is also acceptable to write

Cij = Bkj Aik because the elements of the matrices do commute. This is not, however, matrix
multiplication. Now, Ci1 = BuiA11+B21A12, C12 = B12A11+B22A12, C21 = B11A21+B21A22, and

C22 = Bi2A21+B22A22. This method is much harder to keep track of the summation because it does
NOT follow traditional matrix multiplication.

Let’s look at how this process works for thin lenses. For thin lenses, d,; = 0, so the system matrix
is given by
1 -D;i1 0111 -D 1 -D
— G — 1 2| —
@=Ryga®, = [0 DL O D)<

Pt | . 1]withD=D1+D2.

The system matrix only gets us from the first surface in the optical system to the last surface in the
optical system. How do we determine the equation for creating an image of na object?
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Suppose we place a point object a distance s, from the first surface of the optical system. We wish
to know where the image of that object is formed; i.e., what is s;? In order to determine this, we
must transfer the object to the first surface of the optical system and then transfer the output ray
from the last surface to the final image location. In this process, we must also define what we
mean by the image location. Here is the mathematics.

f8 R L | |

Notice that the equations are best read from the right to the left. We have the object ray vector,
then the transfer to the system, and finally the transfer to the image location. The result, using
step-by-step matrix multiplication, is given by

n, ao]

-D
nlal] _ S S: 51 0 [noao]
20 i 4
-D (—) +111— 1|l y,
n; No

SO
1-p(>2)
3 L [noao
/S S S; '
G+ G2 G)) -0
l n; No n;
Let’s call this large matrix the object-image matrix because it does relate the object and image

distances, so
SO
1-p(%) .
Mo 011 012

£+ @o-0) o)

Let’s connect the object ray and image ray by the object-image matrix in generic terms to see how
we might define the image location.

0=

[nial _[011 012] [noao 011M0Q, +012y0]
yl 031 0Oy 021M0 @, + 022,
Finally,

na; = 011, + 012Y, andy; = 031n,a, + 032Y,.

If something is an image, then the height of the image y; cannot depend on the angle «, at which
the object ray left; i. e., y; # y;(a,). This means that the imaging condition is given by 0,; =
0! For our specific case here, then, we have

B+ G0 6)-



Let’s keep the lens in the same environment (air) on both sides so that n, = n; = n,,. Then we

obtain ( :_:n ) N (;_jn) =D (:—;) (,f_:n)

Set n,,, = 1 and divide by s;s, to obtain

1+1_D_nl—1+1—nl_( 1)(1 1
So Si_ B Ry R, - Ry Ry

fi fi f
This gives us the thin lens equation and the lens-maker’s equation all at once. This equation will

be easily modified when we wish to obtain similar equations for systems of lenses that may be
thick.
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NEXT TIME: Sign conventions, applications of the thins lens and lens-maker’s equations, and
types of lenses



