

ECE 6354/5354 Fall 2016 HW 6 due 10/6

Problem 1 How many basis images are there in the 2-D DCT of a 4x2 image?

Problem 2. Design the max-lloyd **2-level** ($L=2$) optimal quantizer

(t_1 t_2 t_3 r_1 and r_2) for digitizing samples of a time-varying analog signal whose voltage varies between 0 volt and 2 volts and is modeled as generating values according to the probability density function.

$$p_u(x) = \begin{cases} \frac{-x}{2} & \text{for } -2.0 \leq x \leq 0.0 \\ 0 & \text{else} \end{cases}$$

Problem 3. Form an RGB image by decoding the BMP file listed below.

Byte#	1	2	3	4	5	6	7	8	9	10	11	12	13	14
value	66	77	126	0	0	0	0	0	0	0	118	0	0	0
Byte#	15	16	17	18	19	20	21	22	23	24	25	26	27	28
value	40	0	0	0	4	0	0	0	2	0	0	0	1	0
Byte#	29	30	31	32	33	34	35	36	37	38	39	40	41	42
value	31	32	33	34	35	36	8	0	0	0	0	0	0	0
Byte#	43	44	45	46	47	48	49	50	51	52	53	54	55	56
value	46	47	48	49	50	51	52	53	54	55	56	57	58	59
Byte#	57	58	59	60	61	62	63	64	65	66	67	68	69	70
value	0	0	0	255	0	0	0	255	0	0	0	0	255	0
Byte#	71	72	73	74	75	76	77	78	79	80	81	82	83	84
value	1	1	1	0	12	12	12	0	23	23	0	34	34	34
Byte#	85	86	87	88	89	90	91	92	93	94	95	96	97	98
value	45	45	45	45	45	45	56	56	56	56	67	67	67	0
Byte#	99	100	101	102	103	104	105	106	107	108	109	110	111	112
value	78	78	78	0	89	89	89	0	110	110	110	0	121	121
Byte#	113	114	115	116	117	118	119	120	121	122	123	124	125	126
value	0	0	132	132	132	0	4	1	0	0	4	128	0	0

Problem 4.

Encode the following 1-byte digital sequence using LZW encoding with 9-bits for all codewords (0-511 decimal) .

4, 3, 4, 3, 1, 3, 4, 3

Represent the encoded sequence using decimal values 0-511.

Problem 5

Given image $\{f(m, n)\} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, compute the coefficients $\{F(u, v)\} = \begin{bmatrix} [F(0,0)] & F(1,0) \\ F(0,1) & F(1,1) \end{bmatrix}$ of the 2-D DCT transform (where we've used image indexing, not matrix indexing) and compute the four 2x2 basis images.

Problem 6.

a) Copy your file red_24bit_image.cpp to red_8bit_image.cpp.

b) Make red_8bit_image.cpp so that it writes out a BMP image file using 8-bits per pel and a colortable consisting of the red "colors" from 0 for black to 255 for brightest red.

Note:

You must modify the BITMAPINFOHEADER.

A 24-bit BMP image does not have a color table, but your 8-bit BMP files will have a colortable.

Therefore, in red_8b_it_image.c, you will need to write out a color table at the appropriate place in the output file.

You will do this by mallocating a colortable vector containing 256 RGB quads.

In your colortable for "red colors", the RGBquad bytes for blue=0, green=0, and red will take values from 0 through 255.

Finally, you will write out one-byte per pel to the output file.

Steps:

1) Modify the BITMAPINFOHEADER to indicate an 8-bit BMP image.

2) Modify the rowsize to $4 * \text{int}(\text{width} + 3/4)$

3) Make sure the imagedata is mallocated to be the correct size to accomodate 1-byte per pel
 $\text{imagedata} = (\text{unsigned char} *) \text{malloc}(\text{rowsize} * \text{height} * \text{sizeof}(\text{unsigned char}))$;

- 4) Mallocate an unsigned vector to hold the colortable RGB Quads
colortable =(unsigned char *)malloc(4*256*sizeof(unsigned char));
- 5) Assign the correct byte-value to each of the RGB values in the colortable RGBquads vector .
- 6) Make sure the filesize and offset to image data values in the BMP file header reflect the presence of the colortable and the use of 1-byte per pel.
- 7) Write out the colortable after the header (at the appropriate place in the output file).
- 8) Is there anything else you need to change in the program?

You will know that you have correctly taken care of every aspect of the 8-bit BMP image-file when your image opens up and displays correctly. E-mail me your 8-bit BMP image and c code file.