

ECE 6342 Fall 2016 HW 8 Due 11/01

Problem 1. Discrete-time Signal Processing - Oppenheim 2nd ed - Problem 6.15

6.15. Draw the signal flow graph for the transposed direct form II implementation of the LTI system with system function

$$H(z) = \frac{1 - \frac{7}{6}z^{-1} + \frac{1}{6}z^{-2}}{1 + z^{-1} + \frac{1}{2}z^{-2}}.$$

Problem 2. Discrete-time Signal Processing - Oppenheim 2nd ed - Problem 6.29

6.29. The impulse response of a linear time-invariant system is

$$h[n] = \begin{cases} a^n, & 0 \leq n \leq 7, \\ 0, & \text{otherwise.} \end{cases}$$

- (a) Draw the flow graph of a direct-form nonrecursive implementation of the system.
- (b) Show that the corresponding system function can be expressed as

$$H(z) = \frac{1 - a^8 z^{-8}}{1 - az^{-1}}, \quad |z| > |a|.$$

- (c) Draw the flow graph of an implementation of $H(z)$, as expressed in Part (b), corresponding to a cascade of an FIR system (numerator) with an IIR system (denominator).
- (d) Is the implementation in Part (c) recursive or nonrecursive? Is the overall system FIR or IIR?
- (e) Which implementation of the system requires
 - (i) the most storage (delay elements)?
 - (ii) the most arithmetic (multiplications and additions per output sample)?

Problem 3. Discrete-time Signal Processing - Oppenheim 2nd edition Problem 6.8

6.8. The signal flow graph in Figure P6.8-1 represents an LTI system. Determine a difference equation that gives a relationship between the input $x[n]$ and the output $y[n]$ of this system. As usual, all branches of the signal flow graph have unity gain unless specifically indicated otherwise.

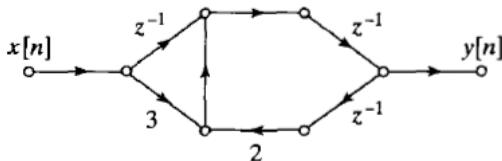


Figure P6.8-1

Problem 4 Discrete-time Signal Processing - Oppenheim 2nd edition Problem 6.10

6.10. Consider the signal flow graph shown in Figure P6.10-1.

- (a) Using the node variables indicated, write the set of difference equations represented by this network.
- (b) Draw the flow graph of an equivalent system that is the cascade of two first-order systems.
- (c) Is the system stable? Explain.

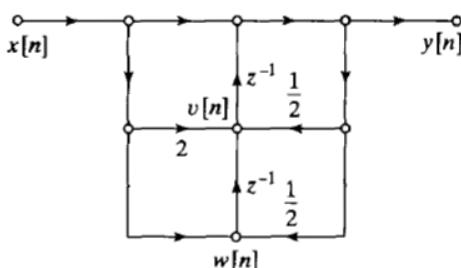


Figure P6.10-1