

ECE 6342 Fall 2016 HW 1 Due Thursday 09/01

Problems from Discrete-time Signal Processing - Oppenheim , 2nd edition , Chapter 2

Problem 1 : Oppenheim problem 2.1

2.1. For each of the following systems, determine whether the system is (1) stable, (2) causal, (3) linear, (4) time invariant, and (5) memoryless:

- (a) $T(x[n]) = g[n]x[n]$ with $g[n]$ given
- (b) $T(x[n]) = \sum_{k=n_0}^n x[k]$
- (c) $T(x[n]) = \sum_{k=n-n_0}^{n+n_0} x[k]$
- (d) $T(x[n]) = x[n - n_0]$
- (e) $T(x[n]) = e^{x[n]}$
- (f) $T(x[n]) = ax[n] + b$
- (g) $T(x[n]) = x[-n]$
- (h) $T(x[n]) = x[n] + 3u[n + 1]$

Problem 2 . Oppenheim problem 2.2

2.2. (a) The impulse response $h[n]$ of a linear time-invariant system is known to be zero, except in the interval $N_0 \leq n \leq N_1$. The input $x[n]$ is known to be zero, except in the interval $N_2 \leq n \leq N_3$. As a result, the output is constrained to be zero, except in some interval $N_4 \leq n \leq N_5$. Determine N_4 and N_5 in terms of N_0 , N_1 , N_2 , and N_3 .

(b) If $x[n]$ is zero, except for N consecutive points, and $h[n]$ is zero, except for M consecutive points, what is the maximum number of consecutive points for which $y[n]$ can be nonzero?

Problem 3 . Oppenheim problem 2.4

2.4. Consider the linear constant-coefficient difference equation

$$y[n] - \frac{3}{4}y[n - 1] + \frac{1}{8}y[n - 2] = 2x[n - 1].$$

Determine $y[n]$ for $n \geq 0$ when $x[n] = \delta[n]$ and $y[n] = 0, n < 0$.

Problem 4 . Oppenheim problem 2.24

2.24. The impulse response of a linear time-invariant system is shown in Figure P2.24-1. Determine and carefully sketch the response of this system to the input $x[n] = u[n - 4]$.

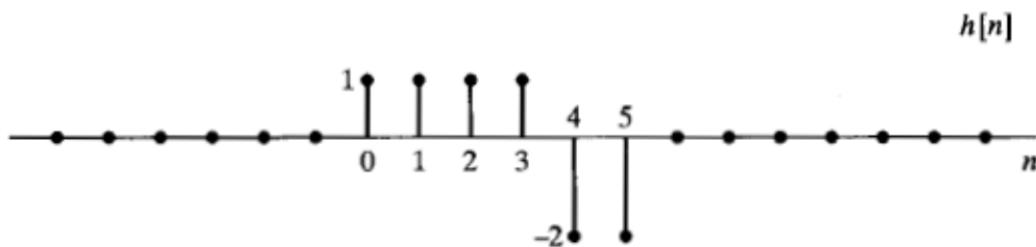


Figure P2.24-1

Problem 5 Oppenheim problem 2.29

2.29. A discrete-time signal $x[n]$ is shown in Figure P2.29-1.

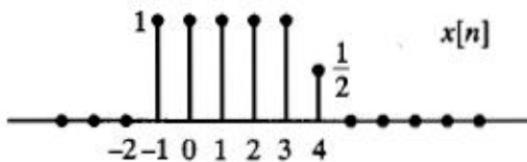


Figure P2.29-1

Sketch and label carefully each of the following signals:

- (a) $x[n - 2]$
- (b) $x[4 - n]$
- (c) $x[2n]$
- (d) $x[n]u[2 - n]$
- (e) $x[n - 1]\delta[n - 3]$

Problem 6. Oppenheim problem 2.30

2.30. For each of the following systems, determine whether the system is (1) stable, (2) causal, (3) linear, and (4) time invariant.

- (a) $T(x[n]) = (\cos \pi n)x[n]$
- (b) $T(x[n]) = x[n^2]$
- (c) $T(x[n]) = x[n] \sum_{k=0}^{\infty} \delta[n - k]$
- (d) $T(x[n]) = \sum_{k=n-1}^{\infty} x[k]$

Problem 7. Oppenheim problem 2.39

2.39. Consider a system with input $x[n]$ and output $y[n]$. The input-output relation for the system is defined by the following two properties:

- 1. $y[n] - ay[n - 1] = x[n]$,
- 2. $y[0] = 1$.

- (a) Determine whether the system is time invariant.
- (b) Determine whether the system is linear.
- (c) Assume that the difference equation (property 1) remains the same, but the value $y[0]$ is specified to be zero. Does this change your answer to either Part (a) or Part (b)?

For more practice, some additional good problems to try out: 2.3, 2.5, 2.10, 2.12, 2.25