

ECE 3364 HW 08, Fall 2016 due 11/1

Problem 1.

Nilsson, eighth edition, Problem 12.21

12.21 Find the Laplace transform of each of the following functions:

- $f(t) = -20e^{-5(t-2)}u(t-2)$.
- $f(t) = (8t-8)[u(t-1)-u(t-2)] + (24-8t)[u(t-2)-u(t-4)] + (8t-40)[u(t-4)-u(t-5)]$.

Problem 2.

Nilsson, eighth edition, Problem 12.40

12.40 Find $f(t)$ for each of the following functions:

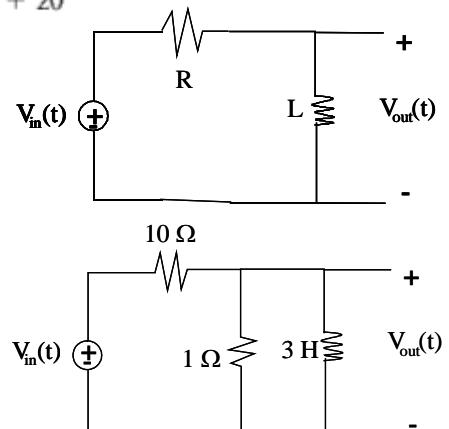
- $F(s) = \frac{18s^2 + 66s + 54}{(s+1)(s+2)(s+3)}$.
- $F(s) = \frac{8s^3 + 89s^2 + 311s + 300}{s(s+2)(s^2 + 8s + 15)}$.
- $F(s) = \frac{11s^2 + 172s + 700}{(s+2)(s^2 + 12s + 100)}$.
- $F(s) = \frac{56s^2 + 112s + 5000}{s(s^2 + 14s + 625)}$.

Problem 3.

Nilsson, eighth edition, Problem 12.42

12.42 Find $f(t)$ for each of the following functions.

- $F(s) = \frac{10s^2 + 85s + 95}{s^2 + 6s + 5}$.
- $F(s) = \frac{5(s^2 + 8s + 5)}{s^2 + 4s + 5}$.
- $F(s) = \frac{s^2 + 25s + 150}{s + 20}$.


Problem 4. Given $v_{in}(t) = e^{-3t}u(t)$, find $v_{out}(t)$ for the two circuits below by using circuit analysis in the LaPlace transform domain.

(a) $R = 10 \Omega$, $L = 3 H$, and the initial current

through the 3 H inductor is $i_L(0^-) = 1.0 A$

(b) Again, the initial current

through the 3 H inductor is $i_L(0^-) = 1.0 A$

Problem 5.

Nilsson,
8th edition
Problem 13.6

13.6 A $1 \text{ k}\Omega$ resistor is in series with a 500 mH inductor. This series combination is in parallel with a $0.4 \mu\text{F}$ capacitor.

- Express the equivalent s -domain impedance of these parallel branches as a rational function.
- Determine the numerical values of the poles and zeros.