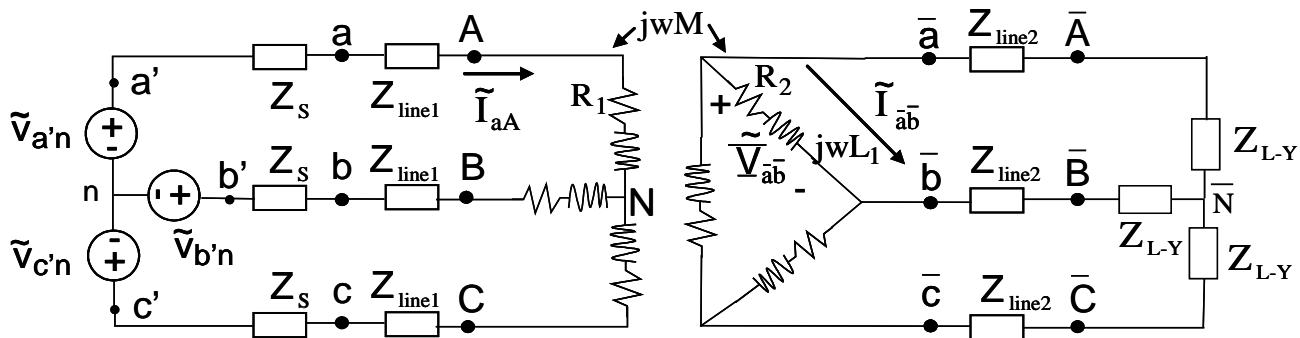


Problem 1.

A balanced 3-phase system has a Y-connected source (voltage and impedance $\tilde{V}_{a'n} = 1365\angle 0^\circ \text{ V}_{rms}$, $Z_s = j2$, positive phase sequence) connected to a transmission line (impedance $Z_{line} = 1.5 \Omega$) which is connected to an **ideal** step-down three-phase $Y - \Delta$ connected transformer ($N_1 = 4000, N_2 = 2000$) whose secondary is connected to a Y-connected load ($Z_{L-Y} = 85.5 + j114 \Omega$). Find the phase current in the secondary coil and total power delivered to the 3-phase load.

Problem 2.


A balanced 3-phase system has a three-phase Y-connected source (voltage and impedance $\tilde{V}_{a'n} = 1365\angle 0^\circ \text{ V}_{rms}$, $Z_s = j2$, positive phase sequence) connected to a three-phase transmission line (impedance $Z_{line} = 1.5 \Omega$) which is then connected to an **ideal** three-phase Y-Y step-down transformer ($N_1 = 4000$). The voltage across the Y-connected load on the secondary side of the transformer ($Z_{L-Y} = 85.5 + j114 \Omega$) is 220 V_{rms} . Find the number of turns N_2 in the secondary windings.

Problem 3.

Consider a balanced 3-phase system with a Y-connected source having internal impedance $Z_s = 4 \Omega$ connected to a 3-phase transmission line having impedance $Z_{line} = 6 + j8 \Omega$. The three-phase transmission line is connected to an **ideal** 3-phase transformer whose primary and secondary number of turns are $N_1 = 4000$ and $N_2 = 2000$. The secondary side of the 3-phase transformer is connected to a Y-connected load $Z_{Y-load} = 10 + j4 \Omega$. Determine which arrangement of the transformer leads would result in the most power delivered to the load?

(a) $Y - \Delta$ (b) $\Delta - Y$ (c) $\Delta - \Delta$ or $Y - Y$

Problem 4.

Given the balanced 3 phase circuit with a three phase $Y - \Delta$ transformer above:

$$\tilde{V}_{a'n} = 1200\angle 0^\circ \text{ V}_{rms} \quad Z_s = 2 + j2 \quad R_1 + j\omega L_1 = 4 + j8 \quad R_2 + j\omega L_2 = 6 + j14$$

$$Z_{line1} = 10 + j5 \quad Z_{line2} = 4 + j1 \quad Z_{L-Y} = 112 - j16$$

$$\omega M = 9$$

Find $I_{\bar{a}\bar{b}}$, the current in the secondary windings.