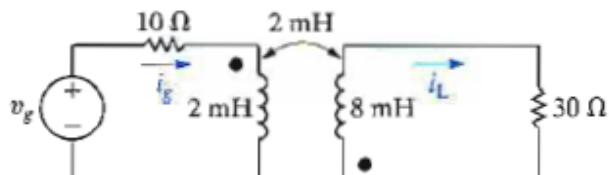

ECE 3364 HW 6, Fall 2016 Due 10/06

Problem 1. Nilsson, 8th edition Problem 10.55

10.55 The impedance Z_L in the circuit in Fig. P10.55 is adjusted for maximum average power transfer to Z_L . The internal impedance of the sinusoidal voltage source is $8 + j56 \Omega$.

- What is the maximum average power delivered to Z_L ?
- What percentage of the average power delivered to the linear transformer is delivered to Z_L ?

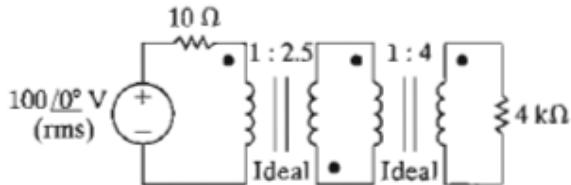
Figure P10.55



Problem 2. Nilsson, 8th edition Problem 10.56

10.56 a) Find the steady-state expression for the currents i_g and i_L in the circuit in Fig. P10.56 when $v_g = 70 \cos 5000t$ V.

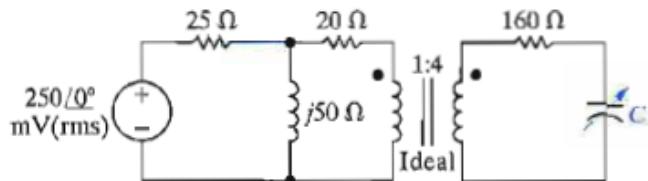
- Find the coefficient of coupling.
- Find the energy stored in the magnetically coupled coils at $t = 100\pi \mu s$ and $t = 200\pi \mu s$.
- Find the power delivered to the 30Ω resistor.
- If the 30Ω resistor is replaced by a variable resistor R_L , what value of R_L will yield maximum average power transfer to R_L ?
- What is the maximum average power in (e)?
- Assume the 30Ω resistor is replaced by a variable impedance Z_L . What value of Z_L will result in maximum average power transfer to Z_L ?
- What is the maximum average power in (g)?


Figure P10.56

Problem 3. Nilsson, 8th edition Problem 10.58

10.58 Find the average power delivered to the $4\text{ k}\Omega$ resistor in the circuit of Fig. P10.58.

Figure P10.58



Problem 4. Nilsson, 8th edition Problem 10.64

10.64 The sinusoidal voltage source in the circuit in Fig. P10.64 is operating at a frequency of 50 krad/s. The variable capacitive reactance in the circuit is adjusted until the average power delivered to the $160\text{ }\Omega$ resistor is as large as possible.

- Find the value of C in microfarads.
- When C has the value found in (a), what is the average power delivered to the $160\text{ }\Omega$ resistor?
- Replace the $160\text{ }\Omega$ resistor with a variable resistor R_o . Specify the value of R_o so that maximum average power is delivered to R_o .
- What is the maximum average power that can be delivered to R_o ?

Figure P10.64

