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3. The need for symbol systems: Productivity, systematicity, compeositionality
and inferential coherence

Classical psychological theories appeal to the constituent structure of mental
representations to explain three closely related features of cognition: its pro-
ductivity, its compositionality and its inferential coherence. The traditional
argument has been that these features of cognition are, on the one hand,
pervasive and, on the other hand, explicable only on the assumption that
mental representations have internal structure. This argument—familiar in
more or less explicit versions for the last thirty years or so— is still intact, so
far as we can tell. It appears to offer something close to a demonstration that
an empirically adequate cognitive theory must recognize not just causal rela-
tions among representational states but also relations of syntact.c and seman-
tic constituency; hence that the mind cannot be, in its general structure, a
Connectionist network.

3.1. Productivity of thought

There is a classical productivity argument for the existence of combinatorial
structure in any rich representational system (including natural languages and
the language of thought). The representational capacities of such a system
are, by assumption, unbounded under appropriate idealization; in pamcular
there are indefinitely many proposmons which the system can encode.?” How-
ever, this unbounded expressive power must presumably be ackieved by finite
means. The way to do this is to treat the system of representations as consis-
ting of expressions belonging to a generated set. More precisely, the corre-
spondence between a represeniation and the proposition it expresses is, in
arbitrarily many cases, built up recursively out of correspondences between
parts of the expression and parts of the proposition. But, of course, this
strategy can operate only when an unbounded number of the etpressxons are
non-atomic. So linguistic (and mental) representations must constitute sym-
bol systems (in the sense of footnote 8). So the mind cannot be a PDP.
Very often, when people reject this sort of reasoning, it is because they
d:.ubt that human cognitive capacities are correctly viewed as productive. In

“This way of putting the productivity argument is most closcly identified with Chomsky {(c.g., Chemsky,
1965; 1968). However, one does not have to rest the argument upon a basic assumption of infinite generative
capacity. Infinite generative capacity can be viewed, instcad, as a consequence or a corollary of theories
formulated so as to capture the greatest number of generalizations with the fewcest independent principles.
This more ncutral approach is, in fact, very much in the spirit of what we shall propose below. We are puiting
it in the present form for expository and historical reasons.
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the long run there can be no a priori arguments for (or against) idealizing to
productive capacities; whether you accept the idealization depends on wheth-
er you believe that the inference from finite performance to finite capacity is
justified, or whether you think that finite performance is typically a result of
the interaction of an unbounded competence with resource constraints. Clas-
sicists have traditionally offered a mixture of methodological and empirical
considerations in favor of the latter view.

From a methodological perspective, the least that can be saic for assuming
productivity is that it precludes solutions that rest on inappropriate tricks
(such as storing all the pairs that definc a function); tricks that would be
unreasonable in practical terms even for soiving finite tasks that place suffi-
ciently large demands on memory. The idealization to unbounded productive
capacity forces the theorist to separate the finite specification of a method
for solving a computational problem from such factors as the resources that
the system (or person) brings to bear on the problem at any given moment.

Tne empirical arguments for productivity have been made most frequently
in connection with linguistic competence. They are familiar from the work of
Chomsky (1968) who has claimed (convincingly, in our view) that the knowl-
edge underlying linguistic competence is generative—i.e., that it allows us in
principle to generate (funderstand) an unbounded number of sentences. It
goes without saying that no one does, or could, in fact utter or understand
tokens of morc than a finiie number of sentence types; this is a trivial conse-
quence of the fact that nobody can utter or understand more than a finite
number of sentence tokens. But there are a number of considerations which
suggest that, despite de facto constraints on performance, ones knowledge of
ones language supports an unbounded productive capacity in much the same
way that ones knowledge of addition supports an unbounded number of
sums. Among these considerations are, for example, the fact that a speaker/
hearer’s performance can often be improved by relaxing time constraints,
increasing motivation, or supplying pencil and paper. It seems very natural
to treat such manipulations as affecting the transient state of the speaker’s
memory and attention rather than what he knows about—or how iie repre-
sents—his language. But this treatment is available only on the assumption
that the character of the subject’s performance is determined by interactions
Sctween ihic available knowledge base and the available computational re-
sources.

Classical theories are able to accommodate these sorts of considerations
because they assume architectures in which there is a functional distinction
between memory and program. In a system such as a Turing machine, wherc
the length of the tape is not fixed in advance, changes in the amount of
available memory can be affected without changing the computational structure
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of the machine; viz., by making more tape available. By contrast, in a finite
state automaton or a Connectionist machine, adding to the memory (e.g., by
adding units to a network) alters the connectivity relations among nodes and
thus does affect the machine’s computational structure. Connectionist cogni-
tive architectures cannot, by their very nature, support an expandable mem-
ory, so they cannot support productive cognitive capacities. The long and
short is that if productivity arguments are sound, then they show that the
architecture of thie mind can’t be Connectionist. Connectionists have, by and
large, acknowledged this; so they are forced to reject productivity arguments.

The test of a good scientific idealization is simply and solely whether it
produces successful science in the long term. It seems to us that the produc-
tivity idealization has more than earned its keep, especially in linguistics and
in theories of reasoning. Connectionists, however, have not been persuaded.
For example, Rumelhart and McClelland (1986a, p. 119) say that they “...
do not agree that [productive] capabilities are of the essence of human com-
putation. As anyone who has ever attempted to process sentences like “The
man the boy the girl hit kissed moved’ can attest, our ability to process even
moderate degrees of cener-embedded structure is grossly impaired relative
to an ATN [Augmented Transiticn Network] parser .... What is needed,
then, is not a mechanism for flaw’=ss and effortless processing of embedded
constructions ... The challenge is to explain hcw those processes that others
have chosen to explain in terms of recursive mechanisms can be better
explained by the kinds of processes natural for PDP networks.”

These remarks suggest that Rumelhart and McClelland think that the fact
that center-embedding sentences are hard is somehow an embarrassment for
theories that view linguistic capacities as productive. But of course it’s not
since, according to such theories, performance is an effect of interactions
between a productive competence and restricted resources. There are, in
fact, quite plausibie Classical accounts of why center-embeddings ought to
impose especially heavy demands con resources, and there is a reasonable
amount of experimental support for these models (see, for example, Wanner
& Maratsos, 1978).

In any evert, it should be obvious that the difficulty of parsing center-em-
beddings can’t be a consequence of their recursiveness per se since there are
many recursive structures that are strikingly easy to understand. Consider:
‘this is the dog that chased the cat that ate the rat vhat lived in the house that
Jack built.” The Classicist’s case for productive capacities in parsing rests on
the transparency of sentences like these.” In short, the fact that center-em-

PMcClelland and Kawamoto (1986) discuss this sort of recursion bricfly. Their suggestion scems to be that
parsing such sentences doesn't really require recovering their recursive structure: ™. the job of the parser



36 J.A. Fodoi and Z.W. Pylyshyn

bedded sentences are hard perhaps shows that there are some recursive struc-
tures that we can’t parse. But what Rumelhart and McClelland need if they
are to deny the productivity of linguistic capacities is the much stronger claim
that there are no recursive structures that we can parse; and this stronger
claim would appear to be simply false.

Rumelhart and McClelland’s discussion of recursion (pp. 119-120)
nevertheless repays close attention. They are apparently prepared to concede
that PDPs can model recursive capacities only indirectly—viz., by implemernt-
ing Classical architectures like ATNs; se that if human cognition exhibited
recursive capacities, that would suffice to show that minds have Classical
rather than Connectionist architecture at the psychological level. “We have
not dwelt on PDP implementations of Turing machines and recursive pro-
cessing engines because we do not agree with those who would argue that such
capacities are of the essence of human computation™ (p. 119, our emphasis).
Their argument that recursive capacities aren’t “of the essence of human
computation” is, however, just the unconvincing stuff about center-embed-
ding quoted above.

So the Rumelhart and McClelland view is apparently that if you take it to
be independently obvious that some cognitive capacities are productive, then
you should take the existence of such capacities to argue for Classical cogni-
tive architecture and hence for treating Connectionism as atr best an im-
plementation theory. We think that this is quite a plausible understanding of
the bearing that the issues about productivity and recursion have on the
issues about cognitive architecture; in Section 4 we will return to the sugges-
tion that Connectionist models can plausibly be consirucd as models of the
implementation of a Classical architecture.

In the meantime, however, we propose to view the status of productivity
arguments for Classical archiiectures as moot; we’re about to present a difier-
ent sort of argument for the claim that mental representations need an articu-
lated internal structure. It is closely related to the productivity argument, but
it doesn’t require the idealization to unbounded competence. Its assumptions

—
{with respect to right-recursive sentences] is to spit out phrases in a way that captures their local context. Such
a representaiion may prove sufficient to aliow us to reconstruct the correci bindings of noun phrases o verbs
and prepositional phrases to nearby nouns and verbs™ {p. 324; emphasis ours). It is, however, by no means
the case that all of the semantically relevant grammatical relations in readily intelligible embedded sentences
are local in surface structure. Consider: *‘Where did the man who owns the cat that chased the rat that
frightened the girl say that he was going to move to {X)? or *Whar did the girl that the children loved to listen
to promise your friends that she would read (X) to them?” Notice that. in such examples, a binding element
{italicized) can be arbitrarily displaced from the position whose interpretation it controls (marked *X') without
making the sentence particularly difficult to understand, Notice too that the *semantics’ doesn't determine the
binding relations in either example.
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should thus be acceptable even :o theorists who—like Connectionists—hold
that the finitistic character of cognitive capacities is intrinsic to their architec-
ture.

3.2. Systematicity of cognitive representation

The form of the argument is this: Whether or not cognitive capacities are
reaily productive, it seems indubitable that they are what we shali call *sys-
tematic’. And we’ll see that the systematicity of cognition provides as good
a reason for postulating combinatorial structure in mental representation as
the productivity of cognition does: You get, in effect, the same conclusion,
but from a weaker premise.

The easiest way to understand what the systematicity of cognitive capacities
amounts to is to focus on the systematicity of language comprehension and
production. In fact, the systematicity argument for combinatorial structure in
thought exactly recapitulates the traditional Structuralist argument for con-
stituent structure in sentences. But we pause i0 remark upon a point that
we’ll re-emphasize later; linguistic capacity is a paradigm of systematic cogni-
tion, but it’s wildly unlikely that it’s the only example. On the contrary,
there’s every reason to believe that systematicity is a thoroughly pervasive
feature of human and infrahuman mentation.

What we mean when we say that linguistic capacities are systemaicc is ihai
the ability to produce/understand some sentences is intrinsically connected to
the ability to produce/understand certain others. You can see the force of
this if you compare learning languages the way we really do learn them with
learning a language by memorizing an ¢normous phrase book. The point isn’t
that phrase books are finite and can therefore exhaustively specify only non-
productive languages; that’s true, but we’ve agreed not to rely on productivity
arguments for our present purposes. Our point is rather that you can learn
any part of a pkra.: book without learning the rest. Hence, on the phrase
book model, it would be perfectly possible to learn that uttering the form of
words ‘Granny’s cat is on Uncle Arthur’s mat’ is the way to say (in English)
that Granny’s cat is on Uncle Arthur’s mat, and yet have no idea at all how
to say that it’s raining (or, for that matter, how to say that Uncle Arthur’s
cat is on Granny’s mat). Perhaps it’s self-evident that the phrase book story
must be wrong about language acquisition because a speaker’s krowledge of
his native language is never like that. You don’t, for example, find native
speakers who know hew to say in English that John loves the girl but don’t
know how to say in English that thc girl loves John.

Notice, in passing, that systematicity is a property of the mastery of the
syntax of a language, not of its lexicon. The phrase book model really does
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fit what it’s like to learn the vocabulary of English since when you learn
English vocabulary you acquire a lot of basicaily independent capacities. So
you might perfectly well learn that using the expression ‘cat’ is the way to
refer to cats and yet have no idea that using the expression ‘deciduous conifer’
is the way to refer to deciduous conifers. Systematicity, like productivity, is
the sort of property of cognitive capacities that you're likely to miss if you
concentrate on the psychology of learning and searching iists.

There is, as we remarked, a straightforward (and quite traditional) argu-
ment from the systematicity of language capacity to the conclusion that sen-
tences must have syatactic and semantic structure: If you assume that sen-
tences are constructed out of words and phrases, and that many different
sequences of words can be phrases of the same type, the very fact that one
formula is a sentence of the language will often imply that other formulas
must be too: in effect, systematicity follows from the postulation of con-
stituent structure.

Suppose, for example, that it’s a fact about English that formulas with the
constituent anaiysis ‘NP Vt NP’ are well formed; and suppose that ‘John’ and
‘the girl’ are NPs and ‘loves’ is a Vt. It follows from these assumptions that
‘John loves the girl,” ‘John loves John,’ ‘the girl loves the girl,” and ‘the girl
loves John’ must all be sentences. It follows too that anybody who has mas-
tered the grammar of English must have linguistic capacities that are systemat-
ic in respect of these sentences; he can’t but assume that all of them are
sentences if he assumes that any of them are. Compare the situation on the
view that the sentences of English are ail atomic. There is then no structural
analogy between ‘John loves the girl’ and ‘the girl loves John’ and hence no
reason why understanding one sentence should imply understanding the
other; no more than understanding ‘rabbit’ implies understanding ‘tree’.*

On tlic view that the sentences are atomic, the systematicity of linguistic
capacities is a mystery; on the view that they have constituent structure, the
systematicity of linguistic capacities is what you would predict. So we should
prefer the latter view to the former.

Notice that you can make this argument for constituent structure in sen-
tences without idealizing to astroriomical computational capacities. There are
productivity arguments for constituent structure, but they’re concerned with
our ability—in principle—to understand sentences that are arbitrarily Jong.
Systematicity, by contrast, appeals to premises that are much nearer home;

%Sce Pinker (1984, Chapter 4) for evidence that children never go through a stage in which they distinguish
between the internal structures of NPs depending on whether they are in subject or object position; i.e., the
dialects that children speak are always systematic with respect to the syntactic structures that can appear in
these positions.
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such considerations as the ones mentioned above, that no speaker under-
stands the form of words ‘John loves the girl’ except as he also understands
the form of words ‘the girl loves John’. The assumvption that linguistic
capacities are productive “in principle” is one that a Connectionist might
refuse to grant. But that they are systematic in fact no one can plausibly deny.

We can now, finally, come to the point: the argument from the systematic-
ity of linguistic capacities to constituent structure in sentences is quite clear.
But thought is systematic too, so there is a precisely parallel argument from
the systematicity of thought to syntaciic and semantic structure in mental
representations.

What does it mean to say that thought is systematic? Well, just as you
don’t find people who can understand the sentence ‘John loves the girl’ but
not ihe sentence ‘the girl loves John,’ so too you don’t find people who can
think the thought that John loves the girl but can’t think the thought that the
girl loves John. Indeed, in the case of verbal organisms the systematicity of
thought follows from the systematicity of language if you assume-—as most
psychologists do—that understanding a sentence involves entertaining the
thought that it expresses; on that assumption, nobody could understand both
the sentences about John and the girl unless he were able to think both the
thoughts about John and the girl.

But now if the ability to think that John loves the girl is intrinsically con-
nected to the ability to think that the girl loves John, that fact will somehow
have to be explained. For a Represeniaticnalisc (which, as we niave seen,
Connectionists are), the explanation is obvious: Entertaining thoughts re-
quires being in representational states (i.e., it requires tokening mental rep-
resentations). And, just as the systematicity of language shows that there
must be structural relations between the sentence ‘John loves the girl’ and
the sentence ‘the girl loves John,’ so the systematicity of thought shows that
there must be siructural relations between the mental representation that
corresponds to the thought that John loves the girl and the mental represen-
tation that corresponds to the thought that the girl loves John;® namely, the
two mental representations, like the two sentences, must be made of the same
parts. But if this explanation is right (and there don’t seem (o b any others
on offer), then mental representations have internal structure and there is a

1t may be worth emphasizing that the structural complexity of a mental representation is not the same
thing as, and docs not follow from, the structural complexity of its propositional content (i.c.. of what we're
calling “the thought that onc has™). Thus, Conncctionists and Classicists can agree to agree that the thought
that P&Q is complex (and has the thought that P among its pa-ts) while agreeing to disagree about whether

mental representations have internal syntactic structure.
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language of thought. So the architecture of the mind is not a Connectionist
network.%

To summarize the discussion so far: Producuvity arguments infer the inter-
nal structure of mental representations from the presumed fact that nobody
has a finite intellectual competence. By contrast, systematicity arguments
infer the internal structure of mental representations from the patent faci that
nobody has s punctate inteliectual competence. Just as you don’t find linguis-
tic capacities that consist of the ability to understand sixty-seven unrelated
sentenccs, so too you don’t find cognitive capacities that consist of the ability
to think seventy-four unrelated thoughts. Our claim is that this isn’t, in either
case, an accident: A linguistic theory that allowed for the possibility of
punctate languages would have gone not just wrong, but very profoundly
wrong. And similarly for a cognitive theory that allowed for the possibility
of punctate minds.

But perhaps not being punctate is a property oniy of the minds of language
users; perhaps the representational capacities of infraverbal organisms do
have just the kind of gaps that Connectionist mode!s permit? A Connectionist
mighi tlicii clahn ihai lie can do everything “up to language” on the assump-
tion that mental representations lack combinatorial syntactic and semantic
structure. Everything up to language may not be everything, but it’s a lot.
(On the other hand, a lot may be a lot, but it isn’t everything. Infraverbal
cogiitive archiiccture mustn’t be so represenied as o make the eventual
acquisition of language in phylogeny and in ontogeny require a miracle.)

It is not, however, plausible that only the minds of verbal organisms are
systematic. Think what it would mean for this to be the case. It would have
to be quite usual to find, for example, animals capable of representing the
state of affairs aRb, but incapable of representing the state of affairs bRa.
Such animals would be, as it were, aRb sighted but bRa blind since, presum-
ably, the representational capacities of its mind affect not just what an or-

*These considerations throw further light on a proposal we discussed in Section 2. Suppose that the mental
representation corresponding to the thought that John loves the girl is the feature vector {+John-subject;
+loves; +the-girl-object} where ‘John-subject’ and ‘t’:e-gir!—object’ are atomic features; as such, they bear no
more siructural relation to “John-object’ and "the-girl-subject’ than they do to one another or to, say, ‘has-a-
handle’. Since this theory recognizes no structural relation between “John-subject” and “John-cbject’, it offcrs
a0 reason why a representational system that provides the means to express one of these concepts should also
provide the means to express the other. This treatment of role relations thus makes a mystery of the {pre-
sumed) fact that anybody who can entertain the thought that John loves the girl can also entertain the thought
that the girl loves John (and, mutatis mutandis, that any natural language that can express the proposition
that John loves the girl can also express the proposition that the girl loves John). This consequence of the
proposal that role rclations be handled by “role specific descriptors that represent the conjunction of an
identity and a role” (Hinton, 1987) offers a particularly clear example of how failure to postulate internal
structure in represcntations leads to failure to capture the systematicity of representational systems.
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ganism can think, but also what it can perceive. In consequence, such animals
would be able to learn to respond selectively to aRb situations but quite
unable to learn to respond selectively to bRa situations. (So that, though you
could teach the creature to choose the picture with the square larger than the
triangle, you couldn’t for the life of you teach it to choose the picture with
the triangle larger than the square.)

It is, to be sure, an empirical question whether the cognitive capacities of
infraverbal organisms are often structured that way, but we’re prepared to
bet that they are not. Ethological cases are the exceptions that prove the rule.
There are examples where salient environmental configurations act as ‘gestal-
ten’; and in such cases it’s reasonable to doubt that the mental representation
of the stimulus is complex. But the point is precisely that these cases are
exceptional; they're exactly the ones where you expect that there will be some
special story to tell about the ecological significance of the stimulus: that it’s
the shape of a predator, or the song of a conspecific ... etc. Conversely, when
there is no such story to tell you expect structurally similar stimuli to elicit
correspondingly similar cognitive capacities. That, surely, is the least that a
respcctable principle of stimulus generalization has got to require.

That infraverbal cognition is pretty generally systematic seems, in short,
to be about as secure as any empirical premise in this area can be. And, as
we’ve just seen, it’s a premise from which the inadequacy of Connectionist
models a3 cogaitive theories follows quite straightforwardly; as straightfor-
wardly, in any event, as it would from the assumption that such capacities
are generally productive.

3.3. Compositionality of representations

Compositionality is closely related to systematicity; perhaps they’re best viewed
as aspects of a single phenomenon. We will therefore follow much the same
course here as in the preceding discussion: first we introduce the concept by
recaliing the standard arguments for the compositionality of natural lan-
guages. We then suggest that parallel arguments secure the compositionality
of mental representations. Since compositionality requires combinatorial svn-
tactic and semantic struciure, the compositionality of thought is evidence that
the mind is not a Connectionist network.

We said that the systematicity of linguistic competence consists in the fact
that “the ability to produce/understand some of the sentences is intrinsically
connected to the ability to produce/understand certain of the others™. We
now add that which seniences are systematically related is not arbitrary from
a semantic point of view. For example, being able to understand “John loves
the girl’ goes along with being able to understand ‘the girl loves John', and
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there are coricspondingly close semantic relations between these sentences:
in order for the first to be true, John must bear to the girl the very same
relation that the truth of the second requires the girl to bear to John. By
contrast, there is no intrinsic connection between understanding eiiner ci the
John/girl sentesices and understanding semantically unrei .ced formulas like
‘quarks are made of giuons’ or ‘the cat is on the mat’ or ‘2 + 2 = 4’; it looks
as though semantical relatedness and systematicity keep quite close company.

You might suppose that this covariance is covered by the same explanation
that accounts for systematicity per se; roughly, that sentences that are sys-
tematically related are composed from the same syntactic constituents. But,
in fact, you need a further assumption, which we’ll call the ‘principle of
compositionality’: insofar as a language is systematic, a lexical item must
make approximately the same semantic contribution to each expression in
which it occurs. It is, for example, only insofar as ‘the’ ‘girl’, ‘loves’ and
‘John’ make the same semantic contribution to ‘John loves the girl’ that they
make to ‘the girl loves John’ that understanding the one sentence implies
understanding the other. Similarity of constituent structure accounts for the
semantic relatedness between systematically related sentences only to the
extent that the semantical properties of the shared constituents are context-in-
dependent. .

Here it’s idioms that prove the rule: being able to understand ‘the’, ‘man’,
‘kicked’ and ‘bucket’ isn’t much help with understanding ‘the man kicked the
bucket’, since ‘kicked’ and ‘bucket’ don’t bear their standard meanings in this
context. And, just as you'd expect, ‘the man kicked the bucket’ is not sys-
ternatic even with respect to syntactically closely related sentences like ‘the
man kicked over the bucket’ (for that matter, it’s not systematic with respect
to the ‘the man kicked the bucket’ read literally).

It’s uncertain exactly how compositional natural languages actually are
(just as it’s uncertain exactly how systematic they are). We suspect that the
amount of context induced variation of lexical meaning is often overestimated
because other sorts of context sensitivity are misconstrued as violations of
compositionality. For example, the difference between ‘feed the chicken’ and
‘chicken to eat’ must involve an animal/food ambiguity in ‘chicken’ rather
than a violation of compositionality since if the context ‘feed the ..."” could
induce (rather than select) the meaning animal, you would expect ‘feed the
veal’, ‘feed the pork’ and the like.”” Similarly, the difference between ‘good
book’, ‘good rest’ and ‘good fight’ is probably not meaning shift but syn-
categorematicity. ‘Good NP’ means something like NP that answers to the

“We arc indebted to Steve Pinker for this point,

o
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relevant interest in NPs: a good book is one that answers to our interest in
books (viz., it’s good to read); a good rest is one that answers to our interest
in rests (viz., it leaves one refreshed); a good fight is one that answers to our
interest in fights (viz., it’s fun to watch or to be in, or it clears the air); and
so on. It’s because the meaning of ‘good’ is syncategorematic and has a
variable in it for relevant interests, that you can know that a good flurg is a
flurg that answers to the relevant interest in flurgs without knowing what
flurgs are or what the relevant interest in flurgs is (see Ziff, 1960).

In any event, the main argument stands: systematicity depends on compo-
sitionality, so to the extent that a natural language is systematic it must be
compositional too. This illustrates another respect in which systematicity ar-
guments can do the work for which productivity arguments have previously
been employed. The traditional argument for compositionality is that it is
required to explain how a finitely representable language can contain infi-
nitely many nonsynonymous expressions.

Considerations about systematicity offer one argument for compositional-
ity; considerations about entailment offer another. Consider predicates like
‘... is a brown cow’. This expression bears a straightforward semantical rela-
tion to the predicates ‘... is a cow’ and ‘... is brown’; viz., that the first
predicate is true of a thing if and only if both of the others are. That is, *...
is a brown cow’ severally entails “... is brown’ and ‘... is a cow’ and is entailed
by their conjunction. Moreover—and this is important—this semantical pat-
tern is not peculiar to the cases cited. On the contrary, it holds for a very
large range of predicates (see ‘... is a red square,’ ‘... is a funny old German
soldier,” ‘... is a child prodigy;’ and so forth).

How are we to account for these sorts of regularities? The answer seems
clear enough; ‘... is a brown cow’ entails ‘... is brown’ because (a) the second
expression is a constituent of the first; (b) the syntactical form ‘(adjective
noun),’ has (in many cases) the semantic force of a conjunction, and (c)
‘brown’ retains its semantical value under simplification of conjunction.
Notice that you need (c) to rule out the possibility that ‘brown’ means brown
when in it modifies a noun but (as it might be) dead when it’s a predicate
adjective; in which case ... is a brown cow’ wouldn’t entail *.... is brown’ after
all. Notice too that (c) is just an application of the principle of composition.

So, here’s the argument so far: you need to assume some degree of com-
positionality of English sentences to account for the fact that systematicaily
related sentences are always semantically related; and to account for certain
regular parallelisms between the syntactical structure of sentences and their
entailments. So, beyond any serious doubt, the sentences of English must be
compositional to some serious extent. But the principle of compositionality
governs the semantic relations between words and the expressions of which



44 J.A. Fodor and Z.V/. Pylyshyn

they are constituents. So compositionality implies that (some) expressions
have constituents. So compositionality argues for (specifically, presupposes)
syntactic/semantic structure in sentences.

Now what about the compaositionality of mental representations? There is,
as youwd expect, a bridging argument based on the usual psycholinguistic
premise that one uses language to express ones thoughts: Sentences are used
to express thoughts; so if the ability to use some sentences is connected with
the ability to use certain other, semantically related sentences, then the ability
to think some thoughts must be correspondingly connected with the ability
to think certain other, semantically related thoughts. But you can only think
the thoughts that your mental representations can express. So, if the ability
to think certain thoughts is interconnected, then the corresponding represen-
tational capacities must be interconnected too; specifically, the ability to be
in some representational states must imply the ability to be in certain other,
semantically related representational states.

But then the question arises: how could the mind be so arranged that the
ability to be in one representational state is connected with the ability to be
in others that are semantically nearby? What account of mental represen-
tation would have this consequence? The answer is just what you’d expect
from the discussion of the linguistic material. Mental representations must
have internai structure, just the way that sentences do. In particular, it must
be that the mental representation that corresponds to the thought that John
loves the girl contains, as its parts, the same constituents as the mental rep-
resentation that corresponds to the thought that the girl loves John. That
would explain why these thoughts are systematically related; and, to the extent
that the semantic value of these parts is contexi-independent, that would explain
why these systematically related thoughts are also semantically related. So, by
this chain of argument, evidence for the compositionality of sentences is
evidence for the compositionality of the representational states of speaker/
hearers.

Finally, what about the compositionality of infraverbal thought? The argu-
ment isn’t much different from the one that we’ve just run through. We
assume that animal thought is largely systematic: the organism that can per-
ceive (hence learn) that aRb can generally perceive (/learn) that bRa. But,
systematically related thoughts (just like systematically related sentences) are
generally semantically related too. It’s no surprise that being able io learn
that the triangle is above the square implies being able to learn that the
square is above the triangle; whereas it would be very surprising if being able
to learn the square/triangle facts implied being able to learn that quarks are
made of gluons or that Washington was the first President of America.

So, then, what explains the correlation beiween systematic relations and
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semantic relations in infraverbal thought? Clearly, Connectionist models
don’t address this question; the fact that a network contains a node labelled
X has, so far as the constraints imposed by Connectionist architecture are
concerned, ne implications at all for the labels of the other nodes in the
network; in particular, it doesn’t imply that there will be nodes that represent
thoughts that are semantically close to X. This is just the semantical side of
the fact that network architectures permit arbitrarily punctate mental lives.

But if, on the other hand, we make the usual Classicist assumptions (viz.,
that systematically related thoughts share constituents and that the semantic
values of these shared constituents are context independent) the correlation
between systematicity and semantic relatedness follows immediately. For a
Classicist, this correlation is an ‘architectural’ property of minds; it couldn’t
but hold if mental representations have the general properties that Classical
models suppose them to.

What have Connectionists to say about these matters? There is some tex-
tual evidence that they are tempted to deny the facts of compositionality
wholesale. For example, Smoiensky {1988) claims that: “Surely ... we would
get quite a different representation of ‘coffee’ if we examined the difference
between ‘can with coffee’ and ‘can without coffee’ or ‘tree with coffee’ and
‘tree without coffee’; or ‘man with coffee’ and ‘man without coffee’ ... context
insensitivity is not something we expect to be reflected in Connectionist rep-

kad

resentations ....".
It’s certainly true that compositionality is not generaily a feature of Con-
nectionist representations. Connectionists can’t acknowledge the facts uf
compositionality because they are committed to mental representations that
don’t have combinatorial structure. But to give up on compositionality is to
take ‘kick the bucket’ as a model for the relation between syntax and seman-
tics; and the consequence is, as we've seen, that you make the systematicity
of language (and of thought) a mystery. Ca the other hand, to say that ‘kick
the bucket’ is aberrant, and that the right model for the syntax/semantics
relation is (e.g.) ‘brown cow’, is to start down a trail which leads, pretty
inevitably, to acknowledging combinatorial structure in mental representa-
tion, hence to the rejection of Connectionist networks as cognitive models.
We don’t think there’s any way out of the need to acknowledge the com-
positionality of natural languages and of mental representations. However,
it’s been suggested (see Smolensky, op cit.) that while the principle of com-
positionality is false (because content isn’t contexi invariant) there is
nevertheless a “family resemblance” between the various meanings that a
symbol has in the various contexts in which it occurs. Since such proposals
generally aren’t elaborated, it’s unclear how they’re supposed to handle the
salient facts about systematicity and inference. But surely there are going to
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be serious problems. Consider, for example, such inferences as

(i) Turtles are slower than rabbits.
(ii) Rabbits are slower than Ferraris.

.......

(iii) Turtles are slower than Ferraris.

The soundness of this inference appears to depend upon (a) the fact ihat
the same relation (viz., slower than) holds between turtles and rabbits on the
one hand, and rabbits and Ferraris on the other; and (b) the fact that that
relation is transitive. If, however, it’s assumed (contrary to the principle of
compositionality) that ‘slower than’ means something different in premises
(i) and (ii) (and presumably in (iii) as well)—so that, strictly speaking, the
relation that holds between turtles and rabbits is not the same one that holds
between rabbits and Ferraris—then it’s hard to see why the inference should
be valid.

Talk about the relations being ‘similar’ only papers over the difficulty since
the problem is then to provide a notion of similarity that will guaranty that
if (i) and (ii) are true, so too is (iii). And, so far at least, no such notion of
similarity has been forthcoming. Notice that it won’t do to require just that
the relations all be similar in respect of their transitivity, i.e., that they all be
transitive. On that account, the argument from ‘turtles are slower than rab-
bits’ and ‘rabbits are furrier than Ferraris’ to ‘turtles are slower than Ferraris’
would be valid since ‘furrier than’ is transitive t0o.

Until these sorts of issues are attended to, the proposal to replace the
compositicnal principle of context invariance with a notion of “approximate
equivalence ... across contexts” (Smolensky, 1988) doesn’t seem to be much
more than hand waving.

3.4. The systematicity of inference

In Section 2 we saw that, according to Classical theories, the syntax of mental
representations mediates between their semantic properties and their causal
role in mental processes. Take a simple case: It’s a ‘logical’ principle that
conjunctions entail their constituents (so the argument from P&{ to P and
to Q is valid). Correspondingly, it’s a psychological law that thoughts that
P& Q tend to cause thoughts that P and thoughts that Q, all else being equal.
Classical theory exploiis the constituent structure of mental representations
to account for both these facts, the first by assuming that the combinatorial
semantics of mental representations is sensitive to their syntax and the second
by assuming that mental processes apply to mental representations in virtue
of their constituent structure.

A consequence of these assumptions is that Classical theories are commit-
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ted to the following striking prediction: inferences that are of similar logical
type ought, pretty generally,® to elicit correspondingly similar cognitive
capacities. You shouldn’t, for example, find a kind of mental life in which
you get inferences from P&Q&R to P but you don’t get inferences from P&Q
to P. This is because, according to the Classical account, this logically
homogeneous class of inferences is carried out by a correspondingly
homogeneous class of psychoiogical mechanisms: The premises of both infer-
ences are expressed by mental rcpresentations that satisiy the same syntactic
analysis (viz., $;&S$,&S:& ... §,); and the process of drawing the inference
corresponds, in both cases, to the same formal operation of detaching the
constituent th=? expresses the conclusion.

The idea that organisms should exhibit similar cognitive capacities in re-
spect of logically similar inferences is so natural that it may seem unavoidable.
But, on the contrary: there’s nothing in principle to preclude a kind of cogni-
tive model in which inferences that are quite similar from the logician’s point
of view are nevertheless computed by quite different mechanisms; or in which
some inferences of a given logical type are computed and other inferciices of
the same logical type are not. Consider, in particuiar, the Connectionist ac-
count. A Connectionist can certainly modei a mental life in which, if you can
reason from P&Q&R to P, then you can also reason from P&Q to P. For
example, the network in (Figure 3) would do:

Figure 3. A possible Connectionist network which draws inferences from P& Q&R to
P and also draws inferences from P&Q to P.

¥The hedge is meant to exclude cases where inferences of the same logical type nevertheless differ in
complexity in virtue of, for example, the length of their premises. The inference from (AB.C.DvE) and
(-B&~-C&-D&—E) to A is of the same logical type as the inference from AvB and ~Bto A. But it wouldn't
be very surprising, or very intercsting, if there were minds that could handle the second inference but not the

firsi.
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But notice that a Connectionist can equally model a mental life in which
you get one of these inferences and not the other. In the present case, since
there is no structural relation between the P& Q&R node and the P&Q node
(remember, all nodes are atomic; don’t be misled by the node labels) there’s
no reason why a mind that contains the first should also contain the second,
or vice versa. Analogously, there’s no reason why you shouldn’t get minds
that simplify the premise John loves Mary and Bill hates Mary but no others;
or minds that simplify premises with 1, 3, or 5 conjuncts, but don’t simplify
premises with 2, 4, or 6 conjuncts; or, for that matter, minds that simplify
only premises that were acquired on Tuesdays ... etc.

In fact, the Connectionist architecture is utterly indifferent as among these
possibilities. That’s because it recognizes no notion of syncax according to
which thoughts that are alike in inferential role (e.g., thoughts that are all
subject to simplification of conjunction) are expressed by mental representa-
tions of correspondingly similar syntactic form (e.g., by mental representa-
tions that are all syntactically conjunctive). So, the Connectionist architecture
tolerates gaps in cognitive capacities; it has no mechanism ic enforce the
requirement that logically homogeneous inferences should be executed by
correspondingly homogeneous computational processes.

But, we claim, you don’t find cognitive capacities that have these sorts of
gaps. You don’t, for example, get minds that are prepared to infer John went
to the store from John zad Mary and Susan and Sally went to the store and
from John and Mary went to the store but not from John and Mary and Susan
went to the store. Given a notion of logical syntax—the very notion that the
Classical theory of mentation requires to get its account of mental processes
off the ground—it is a truism that you don’t get such minds. Lacking a noticn
of logical syntax, it is a mystery that you don’t.

3.5. Summary

It is perhaps obvious by now that all the arguments that we’ve been review-
ing—the argument from systematicity, the argument from compositionality,
and the argument from influential coherence—are really much the same: If
you hold the kind of theory that acknowledges structured representations, it
must perforce acknowledge representations with similar or identical struc-
tures. In the linguistic cases, constituent analysis implies a taxonomy of sen-
tences by their syntactic form, and in the inferential cases, it implies a
taxonomy of arguments by their logical form. So, if your theory also acknowl-
edges mental processes that are structure sensitive, then it will predict that
similarly structured representations will generally play similar roles in
thought. A theory that says that the sentence ‘John loves the girl’ is made
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oui of the same parts as the sentence ‘the girl loves john’, and made by
applications of the same rules of composition, will have to go out of its way
to explain a linguistic competence which embraces one sentence but not the
other. And similarly, if a theory says that the mental representation that
corresponds tc the thought that P& (&R has the same (conjunctive) syntax
as the mental representation that corresponds io the thought that P&(Q and
that mental processes of drawing inferences subsume mental representations
in virtue of their syntax, it will have to go out of its way to exp!ain inferential
capacities which embrace the one thought but not the other. Such a compe-
tence would be, at best, an embarrassment for the theory, and at worst a
refutation.

By conirast, since the Connectionist architecture recognizes no combinat-
orial structure in mental representations, gaps in cognitive competerce should
proliferate arbitrarily. It’s not just that you'd expect to get them from time
to time; it’s that, on the ‘no-structure’ story, gaps are the unmarked case. It’s
the systematic competence that the theory is required to treat as an embarrass-
ment. But, as a matter of fact, inferential competences are blatantly systemat-
ic. So there must be something deeply wrong with Connectionist architec-
ture.

What’s deeply wrong with Connectionist architecture is this: Because it
acknowledges neither syntactic nor semantic structure in mental representa-
tions, it perforce treats them not as a generated set but as a list. But lists,
qua lists, have no structure; any collection of items is a possible list. And,
correspondingly, o Connectionist principles, any coliection of (causaily con-
nected) representational states is a possibie mind. So, as far as Connectionist
architecture is concerned, there is nothing to prevent minds that are arbitrar-
ily unsystematic. But that result is preposterous. Cogpnitive capacities come in
structurally related clusters; their sysiematicity is pervasive. All the evidence
suggests that punctate minds can’t happen. This argument seemed conclusive
against the Connectionism of Hebb, Osgood and Hull twenty or thirty years
ago. So far as we can tell, nothing of any importance has happened to change
the situation in the meantime.”

MHistorical footnote: Connectionists are Associationisis, but not cvery Associationist holds that mental
representations must be unstructured. Hume didn’t, for example. Hume thought that mental representations
are rather like pictures, and pictures typically have a compositional semantics: the parts of a picture of a horse
are generally pictures of horse parts.

On the other hand, allowing a compositional semantics for mental representations doesn’t do an As-
sociationist much good so long as he is true to this spirit of his Associationism. The virtue of having mental
represeatations with structure is that it allows for structure sensitive operations to be defi:_aed over Ehgm;
specifically, it allows for the sort of operations that cventuate in productivity and systematicity. Ass:ocuauon
is not, however, such an operation; all i can do is build an internal model of redunduncies in cxpcne;::cc‘lﬁ'
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A final comment to round off this part of the discussion. It’s possible to
imagine a Connectionist being prepared to admit that while systematicity
doesn’t follow from—and hence is not explained by—Connectionist architec-
ture, it is nonetheless compatible with that architecture. It is, after all, per-
fectly possible to follow a policy of building networks th2: have aRb nodes
only if they have bRa nodes ... etc. There is therefore nothing to stop a
Connectionist from stipulating—as an independent postulate of his theory of
mind—that all biologically instantiated networks are, de facto, systematic.

But this misses a crucial point: It’s not enough just to stipulate systematic-
ity; one is also required to specify a mechanism that is able to enforce the
stipulation. To put it another way, it's not enough for a Conneclionist to
agree that all minds are systematic; he must also explain how nature contrives
to produce only systematic minds. Presumably there would have to be some
sort of mechanism, over and above the ones that Connectionism per se posits,
the functioning of which insures the systematicity of biologically instantiated
networks; a mechanism such that, in virtue of its operation, every network
that has an aRb node also has a bRa node ... and so forth. There are,
however, no proposals for such a mechanism. Or, rather, there is just one:
The only mechanism that is known to be able to produce pervasive system-
aticity is Classical architecture. And, as we have seen, Classical architecture
is not compatible with Connectionism since it requires internally structured
representations.

4. The lure of Connectionism

The current popularity of the Connectionist approach among psychologists
and philosophers is puzzling in view of the sorts of probiems raised above;
problems which were largeiy responsible for the development of a syntax-
based (proof theoretic) notion of computation and a Turing-style, symbol-
processing notion of cognitive architecture in the first place. There are, how-
ever, a number of apparently plausible arguments, repeatedly encountered

altering the probabilities of transitions among mental states. So far as the problems of productivity and
systematicity are concerned, an Associationist who acknowledges structured representations is in the position
of having the can but not the opener.

Hume, in fact, cheated: he allowed himself not just Association but also “Imagination”, which he takes
to be an ‘active’ facuity that can produce new concepts out of old parts by a process of analysis and recombi-
nation. (The idea of a unicorn is pieced together out of the idea of a horse and the idea of a horn, for example.)
Qua associationist Hume had, of course, no right to active mental faculties. But allowing imagination in gave
Hume precisely what modern Connectionists don't have: an answer o the questic:s how menta! precesses can
be productive. The moral is that if you've got structured representations, the temptation to postulate structure
sensitive operations and an exccutive (o appiy thiem is practically irresistible.
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in the literature, that stress certain limitations of conventional computers as
models of brains. These may be seen as favoring the Connectionist alterna-
tive. We will sketch a number of these before discussing the general problems
which they appear to raise.

Rapidity of cognitive processes in relation to neural speeds: the “hundred
step” constraint. It has been observed (e.g., Feldman & Ballard, 1982)
that the time required to execute compuier instrucZions is in the order
of nanoseconds, whereas neurons take tens of milliseconds to fire. Con-
sequently, in the time it takes people to carry out many of the tasks at
which they are fluent (like recognizing a word or a picture, either of
which may require considerably less than a second) a serial neurally-in-
stantiated program would only be able to carry out about 100 instruc-
tions. Yet such tasks might typically require many thousands—or even
millions—of instructions in present-day computers (if they can be done
at all). Thus, it is argued, the brain must operate quite differently from
computers. In fact, the argument goes, the brain must be organized in
a highly parallel manner (“massively parallel” is the preferred term of
art).

Difficulty of achieving large-capacity pattern recognition and content-
based retrieval in conventional architectures. Closely related to the issues
about time constraints is the fact that humans can store and make use
of an enormous amount of information—apparently without effort
(Fahlman & Hinton, 1987). One particularly dramatic skill that people
exhibit is the ability to recognize patterns from among tens or even
hundreds of thousands of alternatives (e.g., word or face recognition).
In fact, there is reason to believe that many expert skills may be based
on large, fast recognition memories {(see Simon & Chase, 1973). If one
had to search through one’s memory serially, the way conventional com-
puters do, the complexity would overwhelm any machine. Taus, the
knowledge that people have must be stored and retrieved differently
from the way conventional computers do it.

Conventional computer models are committed 1o a different etiology for
“rule-governed” behavior and ‘“exceptional” behavior. Classical
psychological theories, which are based on conventional computer ideas,
typically distinguish between mechanisms that cause regular and diver-
gent behavior by postulating systems of explicit unconscious rules to
explain the former, and then attributing departures from these rules to
secondary (performance) factors. Since the divergent behaviors occur
very frequently, a better strategy would be to try to account for both
tvnes of behavior in terms of the same mechanism.
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Lack of progress in dealing with processes that are nonverbal or intuitive.
Most of our fluent cognitive skills do not consist in accessing verbal
knowledge or carrying out deliberate conscious reasoning (Fahlman &
Hinton, 1987; Smolensky, 1988). We appear to know many things that
we would have great difficulty in describing verbally, including how to
ride a bicycle, what our close friends look like, and how to recall the
name of the President, etc. Such knowledge, it is argued, must not be
stored in linguistic form, but in some other “implicit” form. The fact
that conventional computers typically operate in a “linguistic mode”,
inasmuch as they process information by operating on syntactically struc-
tured expressions, may explain why there has been relatively little suc-
cess in modeling implicit knowledge.

Acute sensitivity of conventional architectures to damage and noise. Un-
like digital circuits, brain circuits must tolerate noise arising from spon-
taneous neural activity. Moreover, they must tolerate a moderate degree
of damage without failing completely. With a few notable exceptions, if
a part of the brain is damaged, the degradation in performance is usually
not catastrophic but varies more or less gradually with the extent of the
damage. This is especially true of memory. Damage to the temporal
cortex (usually thought 1o house memory traces) does not result in selec-
tive loss of particular facts and memories. This and similar facts about
orain damaged patients suggests that human memory representations,
and perhaps many other cognitive skills as well, are distributed spatially,
rather than being neurally localized. This appears to contrast with con-
ventional computers, where hierarchical-style control keeps the crucial
decisions highly localized and where memory storage consists of an array
of location-addressable registers.

Storage in conventional architectures is passive. Conventional computers
have a passive memory store which is accessed in what has been called
a “fetch and execute cycle”. This appears to be quite unlike human
memory. For example, according to Kosslyn and Hatfield (1984, pp.
1022, 1029):

In computers the memory is static: once an entry is put in a given location,
it just sits there until it is operated upon by the CPU .... But consider a
very simple experiment: Imagine a letter A over and over again ... then
switrh to the letter B. In a model employing a Von Neumann architecture
the *fatigue’ that inhibited imaging the A would be due to some quirk in
the way the CPU executes a given instruction .... Such fatigue should
generalize to all obiects imaged because the routine responsible for inag-
ing was less effective. But experiments have demonstrated that this is not
true: specific objects become more difficult to image, not all objects. This
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finding is more easilv explained by an analogy to the way invisible ink
fades of its own accord ...: with invisible ink, the represeniation itself is
doing something—there is no separate processor working over it ... .

Conventional rule-based systems depict cognition as “all-or-none”. But
cognitive skills appear to be characterized by various kinds of con-
tinuities. For example:

Continuous variation in degree of applicability of different principles, or
in the degree of relevance of different constraints, “rules”, or proce-
dures. There are frequent cases (especially in perception and memory
retrieval), in which it appears that a variety of different constraints are
brought to bear on a problem simultaneously and the outcome is a
combined effect of ail the different factors (see, for example, the infor-
mal discussicn by McClelland, Rumelhart & Hinton, 1986, pp. 3-9).
That’s why “constraint propagation” techniques are receiving a great
deal of attention in artificial intelligence (see Mackworth, 1987).
Nondeterminism of human behavior: Cognitive processes are never
rigidly determined or precisely replicable. Rather, they appear to have
a significant random or stochastic component. Perhaps that’s because
there is randomness at a microscopic level, caused by irrelevant
biochemical or electrical activity or perhaps even by quantum mechani-
cal events. To model! this activity by rigid deterministic rules can only
lead to poor predictions because it ignores the fundamentally stochastic
nature of the underlying mechanisms. Moreover, deterministic, all-or-
none models will be unable to account for the gradual aspect of learning
and skill acquisition.

Failure to display graceful degradation. When humans are unable to do
a task perfectly, they nonetheless do something reasonable. If the par-
ticular task does not fit exactly into some known pattern, or if it is only
partly understood, a person will not give up or prodvce nonsensical
behavior. By contrast, if a Classical rule-based computer program fails
to recognize the task, or fails to match a pattern to its stored represen-
tations or rules, it usually will be unable to do anything at all. This
suggests that in order to display graceful degradation, we must be able
to represent prototypes, match patterns, recognize problems, etc., in
various degrees.

Conventional models are dictated by curreni technical features of comput-
ers and take little or no account of the facts of neuroscience. Classical
symbol processing systems provide no indication of how the kinds of
processes that they postulate could be realized by a brain. The fact that
this gap between high-level systems and brain archiiccture is so large
might be an indication that these models are on the wrong track.
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Whereas the architecture of the mind has evolved under the pressures
of natural selection, some of the Classical assumptions about the mind
may derive from features that computers have only because they are
explicitly designed for the convenience of programmers. Perhaps this
includes even the assumption that the description of mental processes
at the cognitive level can be divorced from the description of their phys-
ical realization. At a minimum, by building our models to take account
of what is known about neural structures we may reduce the risk of
being misled by metaphors based on contemporary ccmputer architec-
tures.

Replies: Why the usual reasons given for preferring a Connectionist
architecture are invalid

It seems to us that, as arguments against Classical cognitive architecture, all
these points suffer from one or other of the following two defects.

(1) The chjections depend on properties that are not in fact intrinsic to
Classical architectures, since there can be perfectly natural Classical
models that don’t exhibit the objectionable features. (We believe this
to be true, for example, of the arguments that Classical rules are explicit
and Classical operations are ‘all or none’.)

(2) The objections are true of Classical architectures insofar as they are
implemented on current computers, but need not be true of such archi-
tectures when differently (e.g., neurally) implemented. They are, in
other words, directed at the implementation level rather than the cogni-
tive level, as these were distinguished in our earlier discussion. (We
believe that this is true, for example, of the arguments about speed,
resistance to damage and noise, and the passivity of memory.)

In the remainder of this section we will expand on these two points and
relate them to some of the arguments presented above. Following this analy-
sis, we will present what we believe may be the most tenable view of Connec-
tionism; namely that it is a theory of how (Classical) cognitive systems might
be implemented, either in real brains or in some ‘abstract neurology’.

Parallel computation and the issue of speed

Consider the argument that cognitive processes must involve large scale par-
allel computation. In the form that it takes in typical Connectionist discus-
sions, this issue is irrelevant to the adequacy of Classical cognitive architec-



Connectionism and cognitive architecture 55

ture. The “hundred step constraiiit”, for example, is clearly directed at the
implementation level. All it rules out is the (absurd) hypothesis that cognitive
architectures are implemented in the brain in the same way as they are im-
plemented on electronic computers.

If you ever have doubts about whether a proposal pertains to the im-
piementation ievel or the symbolic level, a useful heuristic is to ask yourself
whether what is being claimed is true of a conventional computer—such as
the DEC VAX—at its implementation level. Thus although most algorithms
that run on the VAX are serial, at the implementation level such computers
are ‘massively parallel’; they quite literally involve simultaneous electrical
activity throughout almost the entire device. For exampie, every memory
access cycle involves pulsing every bit in a significant fraction of the system’s
memory registers—since memory access is essentially a destructive read and
rewrite process, the system clock regularly pulses and activates most of the
central processing unit, and so on.

The moral is that the absolute speed of a process is a property par excel-
lence of its implementation. (By contrast, the relative speed with which a
system responds to different inputs is often diagnostic of distinct processes;
but this has always been a prime empirical basis for deciding among alterna-
tive algorithms in information processing psychology). Thus, the fact that
individual neurons require tens of miliseconds to fire can have no bearing on
the predicted speed at which an algorithm will run unless there is at least a
partial, independently motivated, theory of how the operations of the functional
architecture are implemented in neurons. Since, in the case of the brain, it is
not even certain that the firing®' of neurons is invariably the relevant im-
plementation property (at least for higher level cognitive processes like learn-
ing and memory) the 100 step “constraint” excludes nothing.

Finally, absolute constraints on the number of serial steps that a mental
process can require, or on the time that can be required to execute them,
provide weak arguments against Classical architecture because Classical ar-
chitecture in no way excludes parallel execution of multiple symbolic proces-
ses. Indeed, it seems extremely likely that many Classical symbolic processes

“Even in the case of a conventional computer, whether it should be viewed as executing a serial or a
parallel algorithm depends on what virtual machine’ is being considered in the case in question. After all, a
VAX can be used to simulate (i.c., to implement) a virtual machine with a parallel architecture. In that case
the relevant algorithm wculd be a paraliel one.

MThere are, in fact, a number of different mechanisms of neural interaction (e.g., the “local interactions”
described by Rakic, 1975). Morcover, a large number of chemical processes take place at the dendrites,
covering a wide range of time scales, so even if dendritic transmission were the only relevant mechanism, we
still wouldn't know what time scale to use as our estimate of ncural action in general (see, for example, Black,
1986).
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are going on in parallel in cognition, and that these processes interact with
one another (e.g., they may be involved in some sort of symbolic constraint
propagation). Operating on symbols can even involve “massively parallel”
organizations; that might indeed imply new architectures, but they are all
Classical in our sense, since they all share the Classical conception of compu-
tation as symbol-processing. (For examples of serious and interesting propos-
als on organizing Classical processors into large paraliel networks, see
Hewett’s, 1977, Actor system, Hillis’, 1985, “Connecticn Machine”, as well
as any of a number of recent commercial multi-processor machines.) The
point here is that an argument for a network of parallel computers is not in
and of itself either an argument against a Classical architecture or an argu-
ment for a Connectionist architectuie.

Resistance to noise and physical damage (and the argument for distributed
representation)

Some of the other advantages claimed for Connecticaist architectures over
Classical ones are just as clearly a2imed at the implementation level. For
example, the “resistance tc physicai damage” criterion is so obviously a mat-
ter of implementation that it should hardly arise in discussions of cognitive-
level theories.

It is true that a certain kind of damage-resistance appears to be incompat-
ible with localization, and it is also true that representations in PDP’s are
distributed over groups of units (at least when “coarse coding” is used). But
distribution over units achieves damage-resistance only if it entails that repre-
sentations are also neurally distributed.’> However, neural distribution of
representations is just as compatible with Classicai architectures as it is with
Connectionist networks. In the Classical case all you need are memory regis-
ters that distribute their contents over physical space. You can get that with
fancy storage systems like optical ones, or chemical ones, or even with regis-
ters made of Connectionist nets. Come to think of it, we already had it in
the old style “ferrite core” memories!

“Unless the ‘units” in a Connectionist network really are assumed to have different spatially-focused loci
in the brain, talk about distributed representation is likely to be extremely misleading. In particular, if units
are merely functionaily individuated, any amount of distribution or functional entities is compatible with any
amount of spatial compactness of their neural represemtations. But it is not ciear that units do, in fact,
correspond to any anatomically identifiable locations in the brain. In the light of the way Connectionist
mechanisms are designed, it may be appropriate to view units and links as functional/mathematical entitics
(what psychologists would call “hypothetical constructs™) whose ncurological interpretation remains entirely
open. (This is, in fact, the view that some Conncctionists take; see Smolensky, 1988.) The point is that
distribution over mathematical constructs does not buy you damage resistance: only newralf distribution does!
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The physical requirements of a Classical symbol-processing system are eas-
ily misunderstood. (Confounding of physical and functional properties is
widespread in psychological theorizing in general; for a discussion of this
confusion in relation to metrical properties in models of mental imagery, see
Pylyshyn 1981.) For example, conventional architecture requires that there
be distinct symbolic expressions for each state of affairs that it can represent.
Since such expressions often have a structure consisting of concatenated
parts, the adjacency relation must be instantiated by some physical relation
when the architecture is implemented (see the discussion in footnote 9).
However, since the relation to be physically realized is functional adjacency,
there is no necessity that physical instantiations of adjacent symbols be spa-
tially adjacent. Similarly, although complex expressicns are made out of atom-
ic elements, and the distinction between atomic and complex symbols must
somehow be physically instantiated, there is no necessity that a token of an
atomic symbol be assigned a smaller region in space than a token of a complex
symbol; even a token of a complex symbol of which it is a constituent. In
Classical architectures, as in Connectionist networks, functional elements can
be physically distributed or localized to any extent whatever. In a VAX (to
use our heuristic again) pairs of symbols may certainly be functionally adja-
cent, but the symbol tokens are nonetheless spatially spread through many
locations in physical memory.

In short, the fact that a property (like the position of a symbol within an
expression) is functionally local has ro implications one way or the other for
damage-resistance or noise tolerance unless the functional-neighborhood
metric corresponds to some appropriate physical dimension. When that is the
case, we may be able to predict adverse consequences that varying the phys-
ical property has on objects localized in functional space (e.g., varying the
voltage or line frequency might damage the left part of an expression). But,
of course, the situation is exactly the same for Connectionist systems: even
when they are resistant to spatially-local damage, they may not be resistant
to damage that is local along some other physical dimensions. Since spatially-
local damage is particularly frequent in real world traumas, this may have
important practical consequences. But so long as our knowledge of how cog-
nitive processes might be mapped onto biain tissue remains very nearly
nonexistent, its message for cognitive science remains moot.

“Soft” constraints, continuous magnitudes, stochastic mechanisms, and active
symbols

The notion that “soft” constraints which can vary continuously (as degree of
activation does), are incompatible with Classicai rule-based symbolic systems
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is another example of the failure to keep the psychological (or symbol-proces-
sing) and the implementation levels separate. One can have a Classical rule
system in which the decision concerning which rule will fire resides in the
functional architecture and depends on continuously varying magnitudes. In-
deed, this is typically how it is done in practical “expert systems” which, for
example, use a Bayesian mechanism in their production-sysiem ruie-interpret-
er. The soft or stochastic nature or rule-based processes arises from the inter-
action of deterministic rules with real-valued properties of the implementa-
tion, or with noisy inputs or noisy information transmission.

It should also be noted that rule applications need not issue in “aii or
none” behaviors since several rules may be activated at once and can have
interactive effects on the outcome. Or, alternatively, each of the activated
rules can generate independent parallel effects, which might get sorted out
later—depending say, on which of the parallel streams reaches a goal first.
An important, though sometimes neglected point about such aggregate prop-
erties of overt behavior as continuity, “fuzziness”, randomness, etc., is that
they need not arise from underlying mechanisms that are themselves fuzzy,
continuous or random. It is not only possible in principle, but often quite
reasonable in practice, to assume that apparently variable or nondeterministic
behavior arises from the interaction of multiple deterministic sources.

A similar point can be made about the issue of “graceful degradation”.
Classical architecture does not require that when the conditions for applying
the available rules aren’t precisely met, the process should simply fail to do
anything at all. As noted above, rules could be activated in some measure
depending upon how close their conditions are to holding. Exactly what hap-
pens in these cases may depend on how the rule-system is implemented. On
the other hand, it could be that the failure to display “graceful degradation”
really is an intrinsic limit of the current class of models or even of current
approaches to designing intelligent systems. It seems clear that the psycholog-
ical models now available are inadequate over a broad spectrum of measures,
so their problems with graceful degradation may be a special case of their
general unintelligence: They may simply not be smart enough to know what
to do when a limited stock of methods fails to apply. But this needn’t be a
principled limitation of Classical architectures: There is, to our knowledge,
no reason to believe that something like Newell’s (1969) “hierarchy of weak
methods” or Laird, Rosenberg and Newell’s (1986) “universal subgoaling”,
is in principle incapable of dealing with the problem of graceful degradation.
(Nor, to our knowledge, has any argument yet been offered that Connec-
tionist architectures are in principle capable of dealing with it. In fact current
Connectionist models are every bit as graceless in their modes of failure as
ones based on Classical architectures. For example, contrary to some claims,
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models such as that of McClelland and Kawamoto, 1986, fail quite unnatu-
rally when given incomplete information.)

In short, the Classical theorist can view stochastic properties of behavior
as emerging from interactions between the model and the intrinsic properties
of the physical medium in which it is realized. It is essential (0 remember
that, from the Classical point of view, overt behavior is par excellence an
interaction effect, and symbol manipulations are supposed to be only one of
the interacting causes.

These same considerations apply to Kosslyn and Hatfield’s remarks
(quoted earlier) about the commitment of Classical models to ‘passive’ versus
‘active’ representations. It is true, as Kosslyn and Hatfield say, that the rep-
resentations that Von Neumann machines manipulate ‘don’t do anything’
until a CPU operates upon them (they don’t decay, for example). But, even
on the absurd assumption that the mind has exactly the architecture of some
contemporary (Von Neumann) computer, it is obvious that its behavior, and
hence the behavior of an organism, is determined not just by the logical
machine that the mind instantiates, but also by the protoplasmic machine in
which the logic is realized. Instantiated representations are therefore bound
to be active, even according to Classical models; the questicn is whether the
kind of activity they exhibit should be accounted for by the cognitive miodel
or by the theory of its implementation. This question is empirical and must not
be begged on behalf of the Connectionist view. (As it is, for examplz, in such
passages as “The brain itself does not manipulate symbols; the brain is the
medium in which the symbols are floating and in which they trigger each
other. There is no central manipulator, no central program. There is simpily
a vast collection of ‘teams’—patterns of neural firings that, like teams of ants,
trigger other patterns of neural firings ... . We feel those symbols churning
within ourselves in somewhat the same way we feel our stomach churning.”
(Hofstadter, 1983, p. 279). This appears to be a serious case of Formicidae
in machina: ants in the stomach of the ghost in the machine.)

Explicitness of rules

According to McClelland, Feldman, Adelson, Bower, and McDermott (1986,
p. 6), “... Connectionist models are leading to a reconceptualization of key
psychological issues, such as the nature of the representation of knowledge
... . One traditional approach to such issues treats knowledge as a body of
rules that are consulted by processing mechanisms in the course of processing;
in Connectionist models, such knowledge is represented, often in widely dis-
tributed form, in the connections among the processing units.”

As we remarked in the Introduction, we think that the claim that most
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psychological processes are rule-implicit, and the corresponding claim that
divergent and compliant behaviors result from the same cognitive
mechanisms, are both interesting and tendentious. We regard these matters
as entirely empirical and, in many cases, open. In any case, however, one
should not confuse the rule-implicit/rule-explicit distinction with the distinc-
tion between Classical and Connectionist architecture.®

This confusion is just ubiquitous in the Connectionist literature: it is uni-
versally assumed by Connectionists that Classical models are committed to
claiming that regular behaviors must arise from explicitly encoded rules. But
this is simply untrue. Not only is there 5o reason why Classical models are
required to be rule-explicit but—as a matter of fact—arguments over which,
if any, rules are explicitly mentally represented have raged for decades within
the Classicist camp. (See, for relatively recent examples, the discussion of the
explicitness of grammatical rules in Stabler, 1985, and replies; for a
philosophical discussion, see Cummins, 1983.) The one thing that Classical
theorists do agree about is that it can’t be that all behavioral regularities are
determined by explicit rules; at least some of the causal determinants of
compliant behavior must be implicit. (The arguments for this parallel Lewis
Carrolil’s observations in “What the Tortoise Said to Achilles”; see Carroll
1956.) All other questions of the explicitness of rules are viewed by Classicists
as moot; and every shade of opinion on the issue can be found in the Classicist
camp.

The basic point is this: not all the functions of a Classical computer can be
encoded in the form of an explicit program; some of them must be wired in.
In fact, the entire program can be hard-wired in cases where it does not need
to modify or otherwise examine itself. In such cases, Classical machines can
be rule implicit with respect to their programs, and the mechanism of their
state transitions is entirely subcomputational (i.e., subsymbolic).

YAn especially flagrant example of how issues about architecture get confused with issues about the
explicitness of rules in the Connectionist literature occurs in PDP, Chapter 4, where Rumelhart and McClel-
land argue that PDP models provide ... a rather plausible account of how we can come to have innate
‘knowledge’. To the extent that stored knowledge is assumed to be in the form of explicit, inaccessibie rules
... it is hard to seec how it could "get into the head’ of the newborn. It seems to us implausible that the newborn
possesses elaborate symbol systems and the systems for interpreting them required to put these explicit,
inaccessible rules to use in guiding behavior. On our account, we do not need to attribute such complex
machinery. If the innate knowledge is simply the prewired connections, it is encoded from the start in just the
right way to be of use by the processing mechanisms.” (p. 42). A priorizing about what it does and doesn’t
scem likely that newborns possess strikes us as a bad way to do developmental cognitive psychology. But
Rumelhart and McClelland’s argument is doubly beside the point since a Classicist who shares their prejudices
can perfectly well avail himself of the same solution that they endorse. Classical architecture does not require
“complex machinery” for “interpreting” explicit rules since classical macliines do not require explicit rules at
all. Classical architecture is thercfore neutral on the Empiricism/Nativism issue (and so is Connectionism, as
Rumelhart and McClelland clsewhere correctly remark).



Connectionism and cognitive arcnitecture 61

What does need to be explicit in a Classical machine is not its program but
the symbols that it writes on its tapes (or stores in its registers). These,
however, correspend not to the machine’s rules of state transiticn but to its
data structures. Data structures are the objects that the machine transforms,
not the rules of transformation. In the case of programs that parse natural
language, for example, Classical architecture requires the explicit representa-
tion of the structural descriptions of sentences, but is entirely neutrai on the
explicitness of grammars, contrary to what many Connectionists believe.

One of the important inventions in the history of computers—the stored-
program computer—inakes it possible for programs to take on the role of
data structures. But nothing in the architecture requires that they always do
so. Similarly, Turing demionsiratey that ihicre exists an abstract machine (the
so-called Universal Turing Machine) which can simulate the behavior of any
target (Turing) machine. A Universal machine is “rule-explicit” about the
machine it is simulating (in the sense that it has an explicit representation of
that machine which is sufficient to specify its behavior uniquely). Yet the
target machine can perfectly well be “rule-implicit” with respect to the rules
that govern its behavior.

So, then, you can’t attack Classical theories of cognitive architecture by
showing that a cognitive process is rule-implicit; Classical architecture permits
rule-explicit processes but does not require them. However, you can attack
Connectionist architectures by showing that a cognitive process is rule explicit
since, by definition, Connectionist architecture precludes the sorts of logico-
syntactic capacities that are required to encode rules and the sorts of execu-
tive mechanisms that are required to apply them.*

If, therefore, there should prove to be persuasive arguments for rule
explicit cognitive processes, that would be very embarrassing for Connec-
tionists. A natural place to look for such arguments would be in the theory
of the acquisition of cognitive competences. For example, much traditional
work in linguistics (see Prince & Pinker, 1988) and all recent work in
mathematical learning theory (see Osherson, Stov, & Weinstein, 1984), as-
sumes that the characteristic output of a cognitive acquisition device is a
recursive rule system (a grammar, in the linguistic case). Suppose such
theories prove to be well-founded; then that would be incompatible with the
assumption that the cognitive architecture of the capacities acquired is Con-

nectionist.

HOf course, it is possible to simulate a “rule explicit process™ in a Connectionist network by first implement-
ing a Classical architecturc in the network. The slippage betwees networks as architectures and as implemen-
tations is ubiquitous in Connectionist writings, as we remarked above.
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On “Brain style” modeling

The relation of Connectionist models to neuroscience is open to many in-
terpretations. On the one hand, people like Ballard (1986), and Sejnowski
(1981), are explicitly attempting to build models based on properties of
neurons and neural organizations, even though the neuronal units in question
are idealized (some would say more than a little idealized: see, for example
the commentaries following the Ballard, 1986, paper). On the other hand,
Smolensky (1988) views Connectionist units as mathematical objects which
can be given an interpretation in either neural or psychological terms. Most
Connectionists find themselves somewhere in between, frequently referring
to their approach as “brain-style” theorizing.”

Understanding both psychological principles and the way that they are
neurophysiologically implemented is much better (and, indeed, more empir-
ically secure) than only understanding one or the other. That is not at issue.
The question is whether there is anything to be gained by designing “brain
style” models that are uncommitted about how the models map onto brains.

Presumably the point of “brain style” modeling is that theories of cognitive
processing should be influenced by the facts of biology (especially neurosci-
ence). The biological facts that influence Connectionist models appear to
include the following: neuronal connections are important to the patterns of
brain activity; the memory “engram” does not appear to be spatially local;
to a first approximation, neurons appear to be threshold elements which sum
the activity arriving at their dendrites; many of the neurons in the cortex have
multidimension “receptive fields” that are sensitive to a narrow range of
values of a number of parameters; the tendency for activity at a synapse to
cause a neuron to “fire” is modulated by the frequency and recency of past
firings.

Let us suppose that these and similar ciaims are both true and relevant to
the way the brain functions—an assumption that is by no means unproblem-
atic. The question we might then ask is: What follows from such facts that is
relevant to inferring the nature of the cognitive architecture? The unavoid-
able answer appears to be, very little. That’s not an a priori claim. The degree
of relationship between facts at different levels of crganization of a system is
an empirical matter. However, there is reason to be skeptical about whether
the sorts of properties listed above are reflected in any more-or-less direct

*The PDP Research Group views its goal as being “to replace the ‘computer metaphor’ as a model of the
mind with the ‘brain metaphor’ ...” (Rumethart & McClelland, 1986a, Ch. 6, p. 75). But the issue is not at
all which metaphor we should adopt; metaphors (whether ‘computer’ or ‘brain’) tend to be a license to take
one’s claims as something less than serious hypotheses. As Pylyshyn (1984a) points out, the claim that the
mind has the architecture of a Classical computer is not a metaphor but a literal empirical hypothesis.
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way in the structure of the system that carries out rcasoning.

Consider, for example, one of the most salient properties of neural sys-
tems: they are networks which transmit activation culminating in state
changes of some quasi-threshold elements. Surely it is not warranted to con-
clude that reasoning consists of the spread of excitation among representa-
tions, or even among semantic components oi representations. After ail, a
VAX is also correctly characterized as consisting of a network over which
excitation is transmitted culminating in state changes of quasi-threshold ele-
ments. Yet at the level at which it processes representations, a VAXis literally
organized as a Von Neumann architecture.

The point is that the structure of “higher levels” of a system are rarely
isomorphic, or even similar, to the structure of “lower levels” of a system.
No one expects the theory of protons to look very much like the theory of
rocks and rivers, even though, to be sure, it is protons and the like that rocks
and rivers are ‘implemented in’. Lucretius got into trouble precisely by assum-
ing that there must be a simple correspondence between the structure of
macrolevel and microlevel theories. He thought, for example, that hooks and
eyes hold the atoms together. He was wrong, as it turns out.

There are, no doubt, cases where special empirical considerations suggest
detailed structure/function correspondences or other analogies between dif-
ferent levels of a system’s organization. For example, the input to the most
peripheral stages of vision and motor control must be specified in terms of
anatomically projected patterns (of light, in one case, and of muscular activity
in the other); and independence of structure and function is perhaps less
likely in a system whose input or output must be specified somatotopically.
Thus, at these stages it is reasonable to expect an anatomically distributed
structure to be reflected by a distributed functional architecture. When, how-
ever, the cognitive process under investigation is as abstract as reasoning,
there is simply no reason to expect isomorphisms between structure and
function; as, indeed, the computer case proves.

Perhaps this is all too obvious to be worth saying. Yet it seems tiat the
commitment to “brain style” modeling leads to many of the characteristic
Connectionist claims about psychology, and that it does so via the implicit—
and unwarranted—assumption that there ought to be similarity of structure
among the different levels of organization of a computational system. This is
distressing since much of the psychology that this search for structural
analogies has produced is strikingly recidivist. Thus the idea that the brain is
a neural network motivates the revival of a largely discredited Associationist
psychology. Similarly, the idea that brain activity is anatomically distributed
leads to functionally distributed representations for concepts which in turn
leads to the postulation of microfeatures; yet the inadequacies of feature-
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based theories of concepts are well-known and, to our knowledge, micro-fea-
ture theory has done nothing to address them (see Bolinger, 1965; J.D.
Fodor, 1977). Or again, the idea that the strength of a connection between
neurons is affected by the frequency of their co-activation gets projected onto
the cognitive level. The consequence is a resurgence of statistical models of
learning that had been widely acknowledged (both in Psychology and in Al)
to be extremely limited in their applicability (e.g., Minsky & Papert, 1972,
Chomsky, 1957).

So although, in principle, knowledge of how the brain works could dirict
cognitive modeling in a beneficial manner, in fact a research strategy has to
be judged by its fruits. The main fruit of “brain style modeling” has been to
revive psychological theories whose limitations had previously been pretty
widely appreciated. It has done so largely because assumptions about the
structure of the brain have been adopted in an all-too-direct manner as
hypotheses about cognitive architecture; it’s an instructive paradox that the
current attempt to be thoroughly modern and ‘take the brain seriously’ should
lead to a psychology not readily distinguishable from the worst of Hume and
Berkeley. The moral seems to be that one should be deeply suspicious of the
heroic sort of brain modeling that purports to address the pioblems of cogni-
tion. We sympathize with the craving for biologically respectable theories
that many psychologists scem to feel. But, given a choice, truth is more
important than respectability.

Concluding comments: Connectionism as a theory of implementation

A recurring theme in the previous discussion is that many of the arguments
for Connectionism are best construed as claiming that cognitive architecture
is implemented in a certain kind of network (of abstract “units”). Understood
this way, these arguments are neutral on the question of what the cognitive
architecture is.* In these concluding remarks we’ll briefly consider Connec-
tionism from this point of view.

Almost every student who enters a course on computational or informa-
tion-processing models of cognition must be disabused of a very general mis-

*Rumelhart and McClelland maintain that PDP models are more than just theories of implementation
because (1) they add to our understanding of the problem (p. 116}, (2) studying PDPs can lead to the
postulation of different macrolevel processes (p. 126). Both these points deal with the heuristic value of “brain
style” theorizing. Hence, though correct in principle, they are irrelevant to the crucial question whether
Conncctionism is best understood as an attempt to model zeural implementation, or whether it really does
promise a “new theory of the mind™ incompatible with Classical information-processing approaches. It is an
empirical question whether the heuristic value of this approach will turn out to be positive or negative. We
have alrcady commented on our view of the recent history of this attempt.
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understanding concerning the role of the physical computer in such models.
Students are almost always skeptical about “the computer as a model of
cognition” on such grounds as that “computers don’t forget or make mis-
takes”, “computers function by exhaustive search,” “computers are too logical
and unmotivated,” “computers can’t learn by themselves; they can only do
what they’re told,” or “computers are too fast (or too slow),” or “compyuters
never get tired or bored,” and so on. If we add to this list such relatively
more sophisticated complaints as that “computers don’t exhibit graceful de-
gradation” or “computers are too sensitive to physical damage” this list will
begin to look much like the arguments put forward by Connectionists.

The answer io all these complaints has always been that the implementa-
tion, and all properties associated with the particular realization of the aigo-
rithm that the theorist happens to use in a particuiar case, is irrelevant to the
psychological theory; only the algorithm and the representations on which it
operates are intended as a psychological hypothesis. Students are taught the
notion of a “virtual machine” and showa that some virtual machines can
learn, forget, get bored, make mistakes and whatever else one likes, provid-
ing one has a theory of the origins of each of the empirical phesiomena in
question.

Given this principled distinction between a model and its implementation,
a theorist who is impressed by the virtues of Connectionism has the option
of proposing PDP’s as theories of implementation. But then, far from provid-
ing a revolutionary new basis for cognitive science, these models are in
principle neutral about the nature of cognitive processes. In fact, they might
be viewed as advancing the goals of Classical information processing psychol-
ogy by attempting to explain how the brain (or perhaps scme idealized brain-
like network) might realize the types of processes that conventional cognitive
science has hypothesized.

Connectionists do sometimes explicitly take their models to be theories of
implementation. Ballard (1986) even refers to Connectionism as “the impie-
mentational approach”. Touretzky (1986) clearly views his BoltzCONS model
this way; he uses Connectionist techniques to implement conventional symbol
processing mechanisms such as pushdown stacks and other LISP facilities.’

¥Even in this case, where the model is specifically designed to implement Lisp-like features, some of the
rhetoric fails to keep the implementation-algorithm levels distinct. This leads to tatk about “emergent proper-
ties” and to the claim that even when they implement Lisp-like mechanisms, Connectiorist systems “can
compute things in ways in which Turing machines and von Neumann computers can’t.” (Touretzky.' 1986).
Such a claim suggests that ‘Touretzky distinguishes different “ways of computing” not in terms of different
algorithms, but in terms of different ways of implementing the same algorithm. While nobody has proprietz‘x:y
rights to terms like “ways of computing”, this is a misleading way of putting it; it means that a DEC machine
has a “different way of computing™ from an IBM machine even when exccuting the identical program.
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Rumeihart and McClelland (1986a, p. 117), who are convinced that Connec-
tionism signals a radical departure from the conventional symbol processing
approach, nonetheless refer to “PDP implementations” of various mecha-
nisms such as attention. Later in the same essay, they make their position
explicit: Unlike “reductionists,” they believe “... that new and useful concepts
emerge at different levels of organization”. Although they then defend the
claim that one should understand the higher levels “... through the study of
the interactions among lower level units”, the basic idea that there are auton-
omous levels seems implicit everywhere in the essay.

But once one adraits that there really are cognitive-ievel principles distinct
from the (putative) architectural principles that Connectionism articulates,
there seems to be little left to argue about. Clearly it is pointless to ask
whether one should or shouldn’t do cognitive science by studying “the interac-
tion of lower levels” as opposed to studying processes at the cognitive level
since we surely have to do both. Some scientists study geological principles,
others study “the interaction of lower level units” like molecuies. But since
the fact that there are genuine, autonomously-stateable principles of geology
is never in dispute, people who build molecular level models do not claim to
have invented a “new theory of geology” that will dispense with all that old
fashioned “folk geological” talk about rocks, rivers and mountains!

We have, in short, no objection at all to networks as potential implemen-
tation models, nor do we suppose that any of the arguments we’ve given are
incompatible with this proposal. The trouble is, however, that if Connec-
tionists do want their models to be construed this way, then they will have
to radically alter their practice. For, it seems utterly clear that most of the
Coiizectionist models that have actually been proposed must be construed as
theories of cognition, not as theories of implementation. This follows irom
the fact that it is intrinsic to these theories to ascribe representational content
to the units (and/or aggregates) that they postulate. And, as we remarked at
the beginning, a theory of the relations among representational states is ipso
facto a theory at the level of cognition, not at the level of implementation.
It has been the burden of our argument tnat when construed as a cognitive
theory, rather than as an implementation theory, Connectionism appears to
have fatal limitations. The problem with Connectionist models is that all the
reasons for thinking that they might be true are reasons for thinking that they
couldn’t be psychology.
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Conclusion

What, in light of all of this, are the options for the further development of
Connectionist theories? As far as we can see, there are four routes that they
could follow:

(1) Hold out for unstructured mental representations as against the Classi-
cal view that mental representations have a combinatorial syntax and seman-
tics. Productivity and systematicity arguments make this option appear not
attractive.

(2) Abandon network architecture to the extent of opting for structured
mental representations but continue to insist upon an Associationistic account
of the naturc of mental processes. Tnis is, in effect, a retreat to Hume’s
picture of the mind (see footnote 29), and it has a problem that we don’t
believe can be solved: Although mental representations are, on the present
assumption, structured objects, association is not a structure sensitive relation.
The problem is thus how to reconstruct the semantical coherence of thought
without postulating psychological processes liai are sensitive to the structure
of mental representations. (Equivalently, in more modern terms, it’s how to
get the causal relations among mental representations to mirror their seman-
tical relations without assuming a proof-theoretic treatment of inference
and—more generally—a treatment of semantic coherence that is syntactically
expressed, in the spirit of proof-theory.) This is the problem on which tradi-
tional Associationism foundered, and the prospects for solving it now strike
us as not appreciably better than they were a couple of hundred years ago.
To put it a little differently: if you need structure in mental representations
anyway to account for the productivity and systematicity of minds, why not
postulate mental processes that are structure sensitive to account for the
cohierence of mental processes? Why not be a Classicist, in short.

In any event, notice that the present option gives the Classical picture a
lot of what it wants: viz., the identification of semantic states with relations
to structured arrays of symbols and the identification of mental processes
with transformations of such arrays. Notice too that, as things now stand, this
proposal is Utopian since there are no serious proposals for incorporating
syntactic structure in Connectionist architectures.

(3) Treat Connectionism as an implementation theory. We have no princi-
pled objection to this view (though there are, as Connectionists are discover-
ing, technical reasons why networks are often an awkward way to implement
Classical machines). ihis option would entail rewriting quite a lot of the
polemical material in the Connectionist literature, as wei! as redescribing
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‘what the networks are doing as operating on symbol siruciuies, rathics than
spreading activation among semantically interpreted nodes.

Moreover, this revision of policy is sure to lose the movement a lot of fans.
As we have pointed out, many people have been attracted to the Connec-
tionist approach because of its promise to (a) do away with the symbol level
of analysis, and (b) elevate neuroscience to the position of providing evidence
that bears directly on issues of cognition. If Connectionism is considered
simply as a theory of how cognition is neurally implemented, it may constrain
cognitive models no more than theories in biophysics, biochemistry, or, for
that matter, quantum mechanics do. All of these theories are also concerned
with processes that implement cognition, and all of them are likely to pos-
tulate structures that are quite different from cognitive architecture. The point
is that ‘implements’ is transitive, and it goes all the way down.

(4) Give up on the idea that networks offer (to quote Rumelhart & McClel-
land, 1986a, p. 110) “... a reasonable basis for modeling cognitive processes
in general”. It could still be held that networks sustain some cognitive proces-
ses. A good bet might be that they sustain such processes as can be analyzed
as the drawing of statistical inferences; as far as we can tell, what network
models really are is just znalog machines for computing such inferences.
Since we doubt that much of cognitive processing does consist of analyzing
statistical relations, this would be quite a modest estimate of the prospects
for network theory compared to what the Connectionists themselves have
been offering.

This is, for example, one way of understanding what’s going on in the
argument between Rumethart and McClelland (1986b) and Prince and Pinker
(1988), though neither paper puts it in quite these terms. In effect, Rumelhart
and McClelland postulate a mechanism which, given a corpus of pairings that
a ‘teacher’ provides as data, computes the statistical correlation between the
phonological form of the ending of a verb and the phonological form of its
past tense inflection. (The magnitude of the correlations so computed is
analogically represented by the weights that the network exhibits at
asymptote.) Given the problem of inflecting a new verb stem ending in a
specified phonological sequence, the machine chooses the form of the past
tense that was most highly correlated with that sequence in the training set.
By contrast, Prince and Pinker argue (in effect) that more must be going on
in learning past tense morphology than merely estimating correlations since
the statistical hypothesis provides neither a close fit to the ontogenetic data
nor a plausible account of the aduit competence on which the ontogenetic
processes converge. It seems to us that Pinker and Prince have, by quite a
lot, the best of this argument.
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There is an alternative to the Empiricist idea that all learning consists of
a kind of statistical inference, realized by adjusting parameters; it’s the
Rationalist idea that some learning is a kind of theory construction, effected
by framing hypotheses and evaluating them against evidence. We seem to
remember having been through this argument before. We find ourselves with
a gnawing sense of deja vu.
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Résumé

Cet article étudie les différences entre modéles conncctionistes et modeles classiques de la structure cognitive.
Nous pensons que, bien que les deux types de modeéles stipulent I'existence d'états mentaux représentationnels,
la différence essenticlle est que sculs les modeles classiques requiérent P'existence d'un niveau de représenta-
tion symbolique—un “langage de la pensée”—, c'est-a-dire d'états représentationnels possédant une structure
=y ataxique et sémantique. Nous exa:inons ensuite différents arguments qui militent en faveur de 'existence
de représentations mentales ayant ces propriétés. Certains de ces arguments reposent sur la “systématicité”
des représentations mentales, c'est-a-dire sur le fait que les capacités cognitives exhibent toujours certaines
symétries, de sorte que fa capacité d’entreienir certaines pensées implique la capacité d'entretenir d’autres
pensées apparentées par leur contenu sémantique. Nous pensons que ces arguments montrent de maniére
convainquante que I'architecture de I'esprit/du cerveau n'est pas connectioniste au niveau cognitif. Nous nous
demandons ensuite s'il est possible d'interpréter le conncctionisme comme unc analyse des structures
neuronales (ou des structures neurologiques “abstraites™) dans lesquelles est réalisée Parchitecture cognitive
classique. Nous examinons plusicurs des arguments avancés habitucllement cn défense du connectionisme, ¢t
en concluons que ceux-ci n'ont de scns que dans cette interprétation.



