
MACROECONOMETRICS, Spring 2022.

Bent E. Sørensen

1 Unit Roots.

A good place to look after you have read this section is the survey in Handbook of

Econometrics Vol. IV by Jim Stock although there are many good textbook treatments

now, like Bruce Hansen’s forthcoming book or (more complicated) James Hamilton’s

Time Series book.

In the statistical literature it has long been known that unit root processes behave

differently from stable processes.

For example in the scalar AR(1) model, consider the distribution of the OLS estimator

of the parameter a in the simple first order process,

(1) yt = a yt−1 + et .

If et are independently identically normally distributed (niid) variables and aN denotes

the least squares estimator of b based on y0, y1, .., yN , then Mann andWald (1943) showed

that N1/2(aN −a) has a limiting normal distribution if a < 1. White (1958) showed that

|a | N(a2 − 1) (aN − a) has a limiting Cauchy distribution if a > 1, whereas N(aN − 1)

has a limiting distribution that can be written in terms of a ratio of two functionals of

a Wiener process, when a = 1. In the later years a lot of theoretical work has been
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done on the distribution of least squares estimators in the presence of unit roots. Some

notable early contributions are Fuller (1976), Dickey and Fuller (1979,1981), and Evans

and Savin (1981,1984). The authoritative paper by Phillips (1987) sums up most of the

theory.

It was the paper by Nelson and Plosser (1982) that sparked the huge surge in inter-

est for unit root models among economists. They examined time series for some of the

most important U.S. aggregate economic variables and concluded that almost all them

were better described as being integrated of order one rather than stable. (They further

went on to suggest that this favored real-business-cycle type of classical models in favor

of monetarist and Keynesian models. In my opinion it is plain crazy to try and derive

such sweeping conclusions from atheoretical time series modeling, and it is even crazier

to do so on aggregate data; but maybe the huge interest that this paper generated is

partly due to this provocative statement).

The reason why unit roots are so important is that the limiting distributions of es-

timates and test statistics are very different from the stationary case. Most importantly,

one can not (in general) obtain limiting χ2 (or t- or F-) distributions. Rather one ob-

tains limiting distributions that can be expressed as functionals of Brownian motions.

Also notice that in the case where you have a stable model that is “close” to an inte-
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grated process, then the distributions of estimators will look more like the distributions

from unit root models than it will look like the asymptotic (normal type) distribution

in small samples. This phenomenon is treated in the literature under the heading of

near-integrated (or near unit-root, or nearly non-stationary) models. We may not have

time to go into this; but the reading list contains a quite detailed bibliography (since I

happened to have written a paper in that area - I had the references typed up already).

I personally doubt whether many series in economics are best thought of as genuinely

non-stationary, and I don’t think that one really can decide that on the basis of the

statistical evidence (there has been written lots of papers on that question since the in-

fluential paper of Nelson and Plosser (1982)). My point of view is that it does not really

matter. The models will have very different predictions for the very long run whether

they truly have unit roots or not; but to cite Lord Keynes: “In the long run we are all

dead”; or to say it less dramatically - I do not think that simple time series models are

useful for forecasting 20 years ahead under any circumstances. What matters is that the

small sample distributions look like the asymptotic unit root distributions, so if you do

not use those you will make wrong statistical inferences.

1.1 Brownian Motions and Stochastic Integrals.

The easiest way to think of the Brownian motions is in the following way (which corre-

sponds exactly to the way that you will simulate Brownian motions on the computer):
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Let

BN(t) =
1√
N

( e1 + e2 + ... + e[Nt]) ; t ∈ [0, T ] ,

where e1, ..., e[NT ] are iid N(0, 1). The notation [Nt] means the integer part of Nt, i.e.

the largest integer less than of equal to Nt. Note that BN(t) is a stochastic function from

the closed interval [0, T ] to the real numbers. If N is large BN(.) is a good approximation

to the Brownian motion B(t); t ∈ [0, T ] which is defined as

B(t) = lim
N→∞

BN(t) .

For a fixed value of t it is obvious that BN(t) converges to a normally distributed random

variable with mean zero and variance t. To show that BN(t) converges as a function

to a continuous function B(t) takes a large mathematical apparatus. You can find that

in the classical text of Billingsley (1968); but be warned that this is a book written for

mathematicians (but given that it is very well written).

For the purpose of the present course this is all you need to know about the Brownian

motion. One can show that any stationary continuous stochastic process B(t) for which

B(t4)−B(t3) and B(t2)−B(t1)

are independent for all t4 ≥ t3 ≥ t2 ≥ t1 and with

E{B(t2)−B(t1)} = 0 , and V ar{B(t2)−B(t1)} = t2 − t1 ;

has to be a Brownian Motion. The Brownian motion is an example of a process with

identical independent increments. You can convince yourself from the definition I gave
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of Brownian motion, that this formula for the variance is true. Notice that if you start

the process at time 0 then

V ar(B(t)) = t .

So it is obvious that the unconditional variance of B(t) tends to infinity as t tends

to infinity. This corresponds to the behavior of the discrete time random walk, which

again is just an AR(1) with an autoregressive coefficient of 1. So it is not surprising

that Brownian motions show up in the (properly normalized) asymptotic distribution of

estimators of AR models. Brownian motions are quite complicated if you look into some

of the finer details of their sample paths. One can show that Brownian motions with

probability 1 are only differentiable on a set of measure zero. You can also show that a

Brownian motion that you start at zero at time zero will cross the x-axis infinitely many

times in any finite interval that includes 0. Properties like those are very important in

continuous time finance, so if you want to specialize in that field you should go deeper

into the theory of Brownian motions. I have supplied a list of references in the reading

list, that will be useful for that purpose; but for unit root theory this is not absolutely

necessary.

You will also need to be able to integrate with respect to Brownian motions. We want

to give meaning to the symbol
∫ 1

0
f(s)dB(s), where f is a function that will often be

stochastic itself. In many asymptotic formulae f(s) is actually the same as B(s). We

will define the so-called Ito-integral (named after the Japanese mathematician Kiyosi
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Ito): ∫ 1

0

f(s)dB(s) = lim
K→∞

K∑
k=0

f(
k − 1

K
)∆B(

k

K
) ,

where ∆B( k
K
) = B( k

K
)−B(k−1

K
), and where the limit is in probability. You can not obtain

convergence sample path by sample path almost surely (with probability one). If we

temporarily call the stochastic integral on the left hand side for I and the approximating

sum on the right hand side for IK then the convergence in probability means that there

exists a stochastic variable I such that

lim
K→∞

P{|I − IK | > ϵ} = 0

for any given ϵ > 0. This is however a probability statement and it does not preclude

that IK for a given sample path can be found arbitrarily far from I for arbitrarily large

K. For our purpose that does not really matter, since convergence in probability is all

we need. If you want to go through the mathematics (which is detailed in the probability

books in the reading list, with the book by Øksendal as the most accessible), then the

hard part is to show the existence of the limit I to which IK converges, and if you don’t

want to go through the mathematics you should just take it for a fact that the limit

exists in a well defined sense.

Notice that the sum in the approximating sum is over values of the function multi-

plied by a “forward looking” increment in the integrator B. This is essential and you
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will not get the right answer if you do not do it like that. This is in contrast to the

standard Riemann-Stieltjes integral where this does not matter. The definition of the

stochastic integral is given in the way that you can actually simulate the distribution,

and this is the way it is done in many Monte Carlo studies in the literature.

Ito’s Lemma

The main tool of modern stochastic calculus is Ito’s lemma. It is usually formulated as

df(X, t) =
∂f

∂t
dt +

∂f

∂X
dX +

1

2

∂2f

∂X2
(dX)2 where dt2 = 0 , and dB2 = dt .

In this course Ito’s lemma is not so central; but you may meet the following equality

(∗)
∫ 1

0

B(s)dB(s) =
1

2
(B(1)2 − 1) ,

which is a simple consequence of Ito’s lemma. Ito’s lemma is essential in continuous

time finance and in more advanced examinations of unit root theory.

I leave the proof of (*) for the homework.

Example:

Find d log(logB). We do this is 2 stages. First we set X = log(B). Then (since

(dB)2 = dt)

dX =
1

B
dB − 1

2

1

B2
dt .
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Then

d log(logB) =
1

B
dX − 1

2

1

B2
(dX)2

=
1

B
(
1

B
dB − 1

2B2
dt) − 1

2B2

1

B2
dt

=
1

B2
dB − (

1

2B3
+

1

2B4
)dt

(I cannot think of an application of this particular result but it illustrates the method

clearly.)

OLS estimation of AR(1) model Now consider the process (1) again. I will give

you the intuition (I hope) for why the coefficent in the AR(1) model converges at rate

T when it is a random walt and at rate
√
T when it is stable. Notice that if a = 1 then

yt = yt−1 + et =
t∑

k=1

ek .

For the absolute value of a less than one, notice that

yt = et + aet−1 + a2et−2 + ...+ ate0 ,

if the process start at 0. This converges to a random variable with mean 0 and variance

σ2
e

1
1−a2

for T going to infinity. The least squares estimator is

â =

∑T
t=1 ytyt−1∑T
t=1 y

2
t−1

=

∑T
t=1(ayt−1 + et)yt−1∑T

t=1 y
2
t−1

= a +

∑T
t=1 yt−1et∑T
t=1 y

2
t−1
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Now notice the numerator in the last term is mean 0 (because et is) and the variance of

yt−1et is limited, so it satisfies a CLT:

1√
T

T∑
t=1

yt−1et → N(0, σ2) ,

for some variance σ2 (which isn’t to hard to find). And the denominator satisfies a LLN:

1

T

T∑
t=1

y2t−1 → κ ,

for some constant (which also isn’t hard to find). So

√
T (â− a) =

1√
T

∑T
t=1 yt−1et

1
T

∑T
t=1 y

2
t−1

→ X ,

where X is a normal random variable.

When a = 1, none of this goes through and we have to normalize differently:

T (â − 1) = T

∑T
t=1 yt−1∆yt∑T

t=1 y
2
t−1

=

1√
T

∑T
t=1(yt−1/

√
T )et

1
T

∑T
t=1(yt−1/

√
T )2

=

∑T
t=1(yt−1/

√
T )(et/

√
T )∑T

t=1(yt−1/
√
T )2 1

T

.

The next to last term shows how the normalization with 1√
T
keeps the variance of y terms

from going to infinity and the last term involves the terms that converges to functions

of Brownian motion et/
√
T is the dB in the discrete approximation, and 1/T is dt in

a standard intergral. So it is not so mysterious (well, maybe less mysterious at least),

because for large T , yT has variance proportional to T , we need do divide yT by
√
T to

have any hope of converging to something finite. And one can see from the way that we
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defined the Brownian motion that yt−1/
√
T converges to a Brownian motion, and from

the way that we defined the stochastic integral, one can see (at least one would guess)

that

T (â − 1) ⇒
∫ 1

0
B(s)dB(s)∫ 1

0
B(s)2ds

.

Intuitively you should always think of et as dB(t) and yt which under the null of a unit

root is equal to
∑t

k=0 et corresponds then to
∫ t/T

0
dB(s) = B(s/T ) (for B(0) = 0). From

our application of Ito’s lemma one can see that another expression would be

T (â − 1) ⇒ 1

2

B(1)2 − 1∫ 1

0
B(s)2ds

.

Notice that B(1) is just a standard normal distribution, so that B(1)2 is just a standard

χ2(1) distributed random variable. Contrary to the stable model the denominator of

the expression for the least squares estimator does not converge to a constant almost

surely; but rather to a stochastic variable that is strongly correlated with the numerator.

For these reasons the asymptotic distribution does not look like a normal, and it turns

our that the limiting distribution of the least squares estimator is highly skewed, with a

long tail to the left - look at the graph of the distribution in e.g. Evans and Savin (1981).

OK, if you couldn’t quite follow the “derivation” of the limiting distribution, don’t

despair. One needs quite a bit more machinery and notation to make sure that all the

limit operations are legal; but all you need is the basic intuition, so try and get that.
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Most of the part of the unit root literature that is concerned with asymptotic theory

contains the limiting distribution given here. We will refer to the distribution of

∫ 1

0
B(s)dB(s)∫ 1

0
B(s)2ds

as the unit root distribution. It is not possible to find any simple expression for the

density of this distribution but one can find the characteristic function, which can be

inverted in order to tabulate the distribution function—(see Evans and Savin (1981)).

You can also evaluate the distribution by Monte Carlo simulation, which is performed

by choosing a large value of T, and then drawing the innovation terms from a pseudo

random number generator and the generating the series yt from the defining equation

(1). For large T the distribution of the LS estimator is close to the limiting distribution,

which can be graphed by repeating this exercise like 10– or 20,000 times and plotting

the result.

TS and DS models

If you look at a plot of a typical macro economic time series, like real GNP, it is obvious

that it displays are very pronounced trend. What is a trend? Well, for many years that

question was not considered for many seconds—a trend was simply assumed to be linear

function of time, and econometricians would routinely “detrend” their series by using

the residuals from a regression on time (and a constant) rather than the original series.
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This practice was challenged by the Box-Jenkins methodology, which became somewhat

popular in economics in the seventies, although it originated from engineering. The

Box-Jenkins methodology had as one of its major steps the “detrending” of variables

by the taking of differences. In the 80ies a major battle between thes two approaches

raged, with the difference-detrenders seemingly having the upper hand in the late 80ies,

although challenged from many sides—the Bayesians often being the most opinionated

(note, that Bayesians mostly do not rely on asymptotic theory and in finite samples

there is not discontinuous change in the distribution at the unit root).

During that period the following terminology took hold. The model

(DS) yt = µ + yt−1 + et

is called Difference Stationary (DS) since it is stationary after the application of the

differencing operation, and the model and

(TS) yt = µ + βt + a yt−1 + et ; a < 1 ,

is called Trend Stationary (TS) since it is stationary after good old-fashioned detrending

by regressing on a time-trend. Most tests for unit roots are formulated as testing TS

versus DS.
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1.2 Unit Root tests

1.2.1 Dickey-Fuller tests

The most famous of the unit root tests are the ones derived by Dickey and Fuller and

described in Fuller (1976).

Dickey and Fuller considered the estimation of the parameter a from the models

(1) yt = ρ yt−1 + et ,

(2) yt = µ + ρ yt−1 + et .

and

(3) yt = µ + βt + ρ yt−1 + et .

The parameter ρ is just the AR-parameter that we have denoted by a so far; but here I

use the notation of Fuller (1976). It is assumed that y0 = 0.

The simplest Dickey-Fuller test is simply to estimate (1) by least squares and com-

pare T (ρ̂ − 1) to a table of the distribution derived from a Monte Carlo study (or, as

shown in Evans and Savin (1981), one can find the characteristic function and invert it).

This test is sometimes known as the Dickey-Fuller ρ-test. The critical values for this and

the following Dickey-Fuller (DF) tests can be found in Fuller (1976), p. 373. Simplified

versions of the tables from Fuller can be found many places, (The Monte Carlo simula-

tions were actually done as part of David Dickey’s Ph.D. thesis). In practice the model
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(1) is often too simple and one would like to allow for a mean term in the estimation.

Dickey and Fuller suggested that one estimates (2) by first calculating the average ȳ of

the observations y2, ..., yT and the average ȳ0 of y1, ..., yT−1 and then calculates the least

squares estimator ρ̂µ by regressing yt − ȳ on yt−1 − ȳ0. Comparing T (ρ̂µ − 1) to the

critical values in Fuller is known as the Dickey-Fuller ρµ-test. Dickey and Fuller also

suggested estimating ρ̂τ from model (3) by a standard regression and they tabulated the

critical values of T (ρ̂τ − 1) under the composite null hypothesis ρ = 1 and β = 0.

Note that this last test is a test for the DS model against the TS model, and it is known

as Dickey-Fuller ρτ -test.

It is often not realistic that a data series should follow as simple a model as (1), (2),

or (3) with iid error terms. In most economic data series there will also be substantial

short term autocorrelations, so it may be more reasonable to assume the model

(4) yt = a1yt−1 + ...+ apyt−p + et ,

where et is iid normal, rather than model (1) (and equivalent for models (2) and (3)).

An equivalent way of writing model (4) is

(4′) yt = θ1yt−1 + θ2∆yt−1 + ...+ θp∆yt−p+1 + et .

It is simple to show the equivalence of (4) and (4’) and it is left as an exercise. A unit

root in (4) will show up as θ1 = 1 in (4’). So to test for a unit root in (4) you might
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want to use T (θ̂1 − 1). One would expect the distribution of this statistic to depend on

nuisance parameters as e.g. the minimum order p of the autoregression, and it does. One

can show (see Fuller (1976) that c T (θ̂1−1) has the same limiting distribution as T (ρ̂−1)

has, for some constant c, where c is the sum of the terms in the MA representation for et.

It is somewhat complicated to find c which makes this test less appealing; but it turns

out that if you instead of using the distribution of the coefficient you use the distribution

of the t-statistic, then the test will not depend on the form of the autoregression. The

t-statistic has the usual form, that is calculated by any regression package, namely

τ̂ =
ρ̂− 1√

s2(
∑T

t=2 y
2
t−1)

−1

,

in the simplest model with zero mean and no trend.

For model (1) Dickey and Fuller simulated the critical values under the null of a unit

root and the critical values of the test (called the τ̂ -test) is tabulated in Fuller (1976)

p. 373. Dickey and Fuller also simulated the corresponding t-test for model (2) and (3),

which they denoted τ̂µ and τ̂τ .

Testing for unit roots using one of the models (1)-(3) is known as Dickey-Fuller tests,

whether the ρ̂ or the τ̂ -tests are used. Estimating a higher order autoregressive process

(maybe with non-zero mean and trend) and using the critical τ̂ tables are known as Aug-

mented Dickey-Fuller (ADF) tests. ADF-tests are the most widely applied tests for unit

roots. In the influential paper by Engle and Granger (1987) on co-integration, they rec-
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ommended ADF tests after examining ADF and several of its competitors. (In the case

of co-integration test the critical values are different, see the section on co-integration).

Since the publication of Engle and Granger’s article scores of new tests have been devel-

oped and we will look at the most popular contenders below. But let us consider how

to choose between the different DF tests. Experience from Monte Carlo studies, see for

example Dickey, Bell, and Miller (1986), shows clearly that the ρ̂-tests have the highest

power, as was to be expected. Which ρ̂-test should you choose then? That depends,

but in any raw series you typically must assume a non-zero mean, which means that

you should “at least” use the ρ̂µ- test. If you think that it is likely that there may be

a linear trend, then you should use the ρ̂τ -test; but as a general rule this is not “for

free”. In small samples (as we quite commonlu use in economics) there is a loss in power

that increases with the number of parameters that you estimate. On the other hand it

you allow for too few parameters, then your model is misspecified and your tests will be

wrong. In the present case this means that you will prefer not to include a time-trend

if you are reasonably sure that it can safely be left out. Note, however, that the model

2 under the null hypothesis has

(2′) yt = µt +
∑

et ,
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which is not invariant to the µ- term after subtracting the mean yt. In the stable process

on the contrary, the de-meaned value of yt will be independent of the mean term µ (since

µ here shows up as a mean term µ/[1− ρ]). Therefore you have to use the τ̂τ test if you

think that model (2) might be true with a unit root and a non-zero µ.

What do phrases like “reasonably sure” mean? That is hard to tell - it depends

strongly on the number of observations that you have, if you have lots of data: take the

most general model. If you have few data points, you will have to rely partly on the

knowledge that you have about the particular area of economics, that you are research-

ing. You may even feel that you need higher order deterministic terms than Fuller’s

tables allow for, in which case you may have to simulate the distribution under the

null yourself (although you should consult a time series specialist first to see if they are

already available). Be aware that it is not very hard to simulate the null distribution in

GAUSS (or most other modern computer languages).

Now then should you use DF or the ADF test? For example for U.S. macro economic

time series it is not safe to assume that there is no autocorrelation apart from the poten-

tial unit root, which means that you should use the ADF test. How many lags should

you include? Again, it depends on the number of data points that you have and on your

a priori expectations - the considerations are totally parallel to those about mean and

trend terms. What if the process really is an ARIMA(k,1,1)? The MA term corresponds
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to an infinite AR process, so you may hope that including enough AR-terms and letting

the number of included terms go to infinity with T, then you will obtain a consistent

test. Said and Dickey (1984) show that this is exactly the case, given that on chooses

k = k(T ) = k0T
1/3. This is nice to know; but since k0 is unknown it is pretty much

useless as a practical guideline. You may sometimes see the ADF test referred to as the

Said-Dickey test - that is a way of indicating that the author does not consider the order

of the AR model as more than an approximation.

1.2.2 Phillips-Perron tests

The tests that has been most popular next to the DF-tests are the Phillips-Perron (PP)

tests suggested in Phillips and Perron (1988).

In the case where you are convinced that there is no autocorrelation apart from the unit

root, the PP test is identical to the DF test. The difference between the PP and the

DF tests lies in the treatment of the autocorrelation. If there is autocorrelation that

is not accounted for you will get bias. The hard part is to rid of that bias. The ADF

does that by choosing an AR(p) process, but the weak point in that procedure is exactly

the choice of p. Not only does a researcher usually only have vague ideas about the

appropriate chice of p; but for many applied researches it is just too tempting to try
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out a bunch of different values for p until the results corresponds to what the researcher

wanted a priori. If results are derived by data-mining of that sort the asymptotic test

statistics reported will be meaningless.

The idea of the Phillips-Perron test is to run a non-augmented Dickey Fuller regression,

and then to adjust for the bias that might occur due to correlation in the innovation

term so that the Dickey-Fuller tables can be used anyway.

Phillips-Perron suggest estimating ρ̂ from model (2), then estimate the innovation error

variance s2 =
∑T

t=2 ê
2
t and 2π times the spectral density at frequency zero by, 2πf̂e(0),

(we will cover techniques for doing this later on). The Phillips-Perron Z(α̂) test is then

Z(α̂) = T (ρ̂µ − 1) − T 2(2πf̂(0)− s2)

2
∑T

t=2(yt−1 − ȳ−1)2
,

where ȳ−1 is the mean of yt−1. (It has its name because Phillips-Perron uses α rather that

ρ for the AR-parameter; but here we will not change notation again). The corresponding

t-statistic is

Z(tα̂) = τµ

√
s2

2πf̂(0)
− T (2πf̂(0)− s2)

2
√
2πf̂(0)

∑T
t=2(yt−1 − ȳ−1)2

.

Correspondingly for the model that allows for a time trend under the alternative Phillips

and Perron suggest the adjusted DF tests

Z(α̃) = T (ρ̂τ − 1) − T 2(2πf̂(0)− s2)

2
∑T

t=2(yt−1 − ŷ)2
,
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and

Z(tα̃) = ττ

√
s2

2πf̂(0)
− T (2πf̂(0)− s2)

2
√
2πf̂(0)

∑T
t=2(yt−1 − ŷ)2

,

where ŷ is the projection of yt−1 on 1, t (i.e. the fitted value from a regression of lagged

y on a constant and a time trend) and s2 is defined as before but now from the residuals

from the regression of yt on yt−1, 1, t. The PP-tests now consist of comparing those

adjusted DF-values with the corresponding tables used for the basic Dickey-Fuller test.

You will hear those tests referred to as the Phillips- Perron tests or as the Zα and Zt

tests.

An interesting (and extensive) Monte Carlo study is Schwert (1987). Schwert exam-

ines what happens to the size of the above mentioned tests if the true process is an

ARIMA(1,1,1) and the Phillips-Perron or the ADF tests are used. A very clear conclu-

sion from Schwert’s study is that the ADF test, used with “many” lags, have the best

size-properties in the sense that the size of the small sample distribution is close to the

true 5% size if the Dickey-Fuller tables are used. The other tests can be very far of in

terms of size, especially if the ARIMA-process has a large negative MA-coefficient, in

which case the PP tests (and also the ADF test when the MA-coefficient is very close to

-1), almost always reject the unit root model (even if it is true). Note that the happens
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because the model has the form

(1− L)yt = (1 + bL)et .

One can see that the two lag polynomials “nearly cancel” when b is close to −1. Some

authors call processes like that “nearly white noise processes”.

Does this mean that one should always use the ADF-test with a high number of AR-

terms? Not necessarily, since there is a cost in terms of power. It seems that this cost is

not nearly as high as the cost incurred by falsely allowing for a trend-term (see Dickey,

Bell and Miller (1986)), but there will presumably still be some loss in power. In an

interesting Monte Carlo study, Campbell and Perron (1991) show that both the Said-

Dickey test (with 6 lags) and the Phillips-Perron test falsely reject the unit root almost

every time in the case of nearly white noise processes. They also show, however, that for

simple short term forecasting, this will not necessarily result in a decline in the ability

to make simple forecasts, since the trend stationary model forecasts just as well in the

cases where the unit root model tends to be falsely rejected.
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1.2.3 Approximate POI-tests

In a recent interesting paper Elliott, Rothenberg and Stock (1992) (ERS) examine “point

optimal invariant tests” (POI) for unit roots. An invariant test is a test – like the

augmented Dickey-Fuller test – that is invariant to nuisance parameters. In the unit root

case that will be tests that are invariant to the parameters that capture the stationary

movements around the unit roots (i.e., the parameters to ∆Xt−1,∆Xt−2, · · · ,∆Xt−k in

the ADF-case).

The most commonly used test are the “τ -tests” that allows for a deterministic time

trend (in the case where you do not allow for a time trend most tests are pretty well

behaved), so I will only consider this type of test in this subsection.

When

yt = µ+ σt+ ut ; ut = ρut−1 + ϵt ,

ERS show that the POI test for a unit root against ρ = ρ has the form

MT =
σ̃2

σ̂2
,

where

σ̃2 = T−1

T∑
t=1

ẽ2t ; σ̂2 = T−1

T∑
t=1

ê2t ,

and êt and ẽb are the residuals from the GLS estimation of yt on zt = (1, t) under
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ρ = 1 and ρ = ρ respectively:

ê = ŷt − β̂′ẑt ; (β̂ = (
∑

ẑtẑ
′
t)

−1(
∑

ẑtyt) ,

where

(ŷ1, · · · , ŷT ) = (y1,∆y2, · · · ,∆yT ) ,

and

(ẑ1, · · · , ẑT ) = (z1,∆z2, · · · ,∆zT ) ,

and correspondingly for ẽ except

(ỹ1, · · · , ỹT ) = (y1, (1− ρL)y2, · · · , (1− ρL)yT ) ,

and

(z̃1, · · · , z̃T ) = (z1, (1− ρL)z2, · · · , (1− ρL)zT ) .

This last transformation is the GLS-detrending (if you are not quite sure what I mean

by that, check your first year econometrics text (look under AR(1) disturbances) - most

often the first observation will also be rescaled, but asymptotically that does not make

a difference).

The critical value for the test will depend on c where

ρ = 1− c

T
.

When

ut = ρut−1 + β2∆ut−2 + · · ·+ βk∆ut−k + ϵt ,

23



the critical value of the test statistic has to be adjusted in the same way as for the

Phillips-Perron (PP) test (in practice you adjust the test-statistic rather than the critical

value, (and you don’t have to assume a finite AR-representation), exactly as in the PP

case).

In practice, ρ is not known, so ERS suggest choosing an approximate value of c.

They suggest using the value of c that asymptotically gives a power of 50%. These

values are c = −7 in case of a mean and c = −13.5 in the case of a trend ). ERS show

that this way we get approximately the POI test asymptotically.

Also, it turns out that if we instead do the GLS-adjustment and then perform the

ADF-test (now without allowing for a mean or trend) we get approximately the POI-

test. Elliott et al. call this test the DF-GLSτ test. They argue that the theoretical

examinations above point to the GLS-adjustment as the critical factor, and they then

show by Monte Carlo simulation that the DF-GLSτ seems to behave as well as the

approximate POI test (using the values for c that I listed above).

The critical values depend on T . The critical values are
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T 1% 5%

50 -3.77 -3.19

100 -3.58 -3.03

200 -3.46 -2.93

500 -3.47 -2.89

∞ -3.48 -2.89

If you need critical values for the variant of the test with mean but not trend, see

the article by ERS. (They call that test the DF-GLSµ test.)

1.3 The importance of unit roots

The discussion above indicates that there is not necessarily a sharp distinction between

unit root processes and stable processes, which has led some researchers (Cochrane

(1991), Christiano and Eichenbaum (1989) - the later paper titled “Unit roots in real

GNP: Do we know and do we care?”) to question the importance of unit root tests.

I do not think that arguments that stresses that some stable processes look a lot like

unit root processes in finite time, makes it less important to test for unit roots. But
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it is true that there are models, like the ARIMA models where the MA-process nearly

cancels with the unit root, in which it really isn’t interesting whether the model “truly”

is a unit root model. In my opinion no time series model is true in econometrics any-

way. If one accepts that these models are just approximations then there isn’t really

a problem - if the stable process does a good enough job at modeling the data, then let it!

It turns out that one can always decompose a unit root process into the sum of a

random walk and a stable process. This is known as the Beveridge-Nelson (1981) com-

position. The Beveridge-Nelson (BN) decomposition states that any I(1) time series can

be decomposed into the sum of a random walk an I(0) time series. In the vector case we

can state the results as

Theorem: Beveridge-Nelson decomposition

Any I(1) process yt can be written as the sum of a random walk st and a stable process

ct (st and ct will not be independently distributed):

yt = st + ct

Proof: Since (1− L)yt is a stable process it has a Wold-decomposition

(1− L)yt = ψ(L)et ,
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now write

(1− L)yt = ψ(L)et = ψ(1)et + (ψ(L)− ψ(1))et ,

which is equivalent to

(1− L)yt = ψ(L)et = ψ(1)et + ψ∗∗(L)et ,

where ψ∗∗(1) = 0. This implies that

yt = ψ(1)(1− L)−1et + (1− L)−1ψ∗∗(L)et ,

which has the form

yt = st + ψ∗(L)et ,

where ψ∗(L)et is a stable process and st is the random walk ψ(1)(1−L)−1et = ψ(1)
∑t

s es.

QED.

Note that ψ(1)et is the long run effect of et. For example if y0 = 0 then yT →

ψ(1)e1+hT (e2, e3, ..) for some function h. Also note that the derivation of the Campbell

and Mankiw (1987) suggested the use of ψ(1) as a measure of the persistence in yt;

whereas Cochrane (1988) suggests the use of

ψ(1)2σ2
e/σ

2
∆y ,

where σ2
∆y and σ2

e is the variance of ∆yt and et, respectively. (Note the importance of

the spectral density for ∆y at frequency zero). Cochrane refers to his measure as the
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size of the unit root. This may be a slightly unfortunate term, and some researchers

prefer not to use it; but you will meet it in the literature. Cochrane’s measure is best if

you want to measure the importance of the random walk component of a series relative

to the stationary part of the series (if Cochrane’s measure is very small an ADF test

would most likely conclude falsely that the process was stable) whereas Campbell and

Mankiw’s measure is better if you are a macroeconomist who wants to know the impact

in the infinite future of a shock happening today.
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