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1 Estimation of Simple Time Series Models

This note assumes that you know time series models at the level covered in the note

that I post for Macro II.

We will assume that the data are normally distributed. As you know, OLS is maxi-

mum likelihood estimation of the linear model so OLS is often short-hand for maximum

likelihood of normal data, but it also goes the other way, the maximum likelihood es-

timator minimizes (a weighted) sum of squares which is often efficient even if the data

are not normally distributed (this assumes that the data are not very far from normally

distributed and of course it is not alway obvious what ”very far” means).

Assume the data, Y = y1, ..., yT are normally distributed with variance var(X) = Ω

and EY = µ. Ω has the variances on the diagonal and the covariances outside the

diagonal, so the observations y1, ..., yT will be independent if Ω is diagonal, otherwise

not, and they will be i.i.d. if the diagonal elements further are identical. The normal

likelihood function takes the form

£(µ,Ω) =
1√
|Ω|

exp (−1

2
(Y − µ)Ω−1(Y − µ)) .

Often, we will have µ′ = (x1β, ..., , xTβ) (the linear regression model). The following

considerations are the same in this case, so we will use the simpler setup for the mean

at first. The log-likelihood function is

l(µ,Ω) = −1

2
log |Ω| − 1

2
(Y − µ)′Ω−1(Y − µ)

When Ω = σ2I is the identity matrix multiplied by a scalar, this reduces to the basic

“OLS-assumptions” of i.i.d. observation (or, strictly speaking, the error terms being
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i.i.d.). In this case the determinant is just T σ2 and the term (Y − µ)′Ω−1(Y − µ) =

ΣT
t=1

(yt−µ)2
σ2 which should be familiar to you. If Ω is not the identity matrix, we need

a model for the variance because it contains T ∗ (T + 1)/2 variance and co-variance

terms and one can at the most estimate T parameters from T observations (and even

that won’t go well, one rule of thumb says you need twenty times the number of pa-

rameters, but if the data points are highly correlated you need much more than that for

precise inference, so that rule thumbs should maybe say “under ideal circumstances.....”).

Consider the case of heteroskedasticity. (I assume that is well known, but you may

not have thought of it in the likelihood framework, or at least not in the notation of this

note.) This is the case where Ω is diagonal


σ2
1 0 0 ... 0

0 σ2
2 0 ... 0

...

0 0 0 ... σ2
T

 .

In order to estimate this model, we need to decrease the number of parameters to be

estimated, for example, we may suspect—or derive from a model—that σt = θ0 + θ1xt

for some x. In the case, we would write Ω = Ω(θ) (where θ′ = θo, θ1). You can then

estimate the model using two-step GLS: first OLS, then fit the model for σ to the

residuals, transform the data as

yt
σt

= µ ∗ 1

σt
+ ut ,

where the error term ut = yt−µ
σt

now is homoskedastic. Note, you would divide by a

consistent estimate of the standard deviation. Note, you have to divide all regressors by

the initial innovation standard deviation, including the constant which we usually sup-

press. Note, this is the simplest example of feasible GLS, and dividing by the standard

deviation is the same as transforming the data using the inverse square-root of Ω. If we

use the typical notation ι = (1, ..., 1)′, we have

Ω−1/2yt = µΩ−1/2ι+ u ,
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where you typically have more regressors but they will all be treated the same way.

Or, you can estimate all parameters simultaneously by ML. Both ways are consistent

under standard assumptions, but the standard errors may be off if you do not estimate

the parameters simultaneously (or otherwise control for the noise that you introduce by

dividing by an estimated value of the variance parameters)..

This was just a warm-up. Estimating autoregressive (AR) models can similarly be done

using ML or two-step GLS (sometimes involving simplifying approximation) as I will ex-

plain next. Estimating moving average (MA) models can be done using approximations

or using ML, while two-step GLS not easy as I will explain below.

1.1 Estimation of AR models.

We will first consider estimation of the scalar AR(k) model:

xt = µ + a1xt−1 + ... + akxt−k + ut .

Estimation of the univariate AR model is covered in all introductory time series texts,

and in most text-books. I probably prefer Davidson-MacKinnon on this.

The logic of the AR(1) model captures the logic of higher order models, although for

higher orders than AR(2), it is hard to analytically find the variance and autocovari-

ances. For the stationary AR(1) model, yt = µ+ ayt−1 + ut (with error variance σ2
u), it

is quite is to show (as you would have done in macro), that

var(yt) =
σ2
u

1− a2
,

and the k’th order autocoveriance is

E{(yt − E(yt))((yt−k − E(yt))} =
ak σu2

1− a2
,

which is also valid for k = 0. Note that by stationarity E(yt−k) = E(yt). Note: for

the purpose of finding variances and covariances, the mean doesn’t matter and be set to
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zero to simplify computations. Filling these into the variance matrix (which you may

do in an actual subroutine for ML estimation), we get

Ω =
σ2
u

1− a2


1 a a2 ... aT−1

a 1 a ... aT−2

...

aT−1 aT−2 aT−3 ... 1

 .

To do GLS analytically, we would have to find Ω−1/2. (Note: we sometimes include

σu in Ω and sometimes not, I hope that is not a source of confusion.) We can find

one version of Ω−1/2 by realizing what the matrix does: it creates variables that are

uncorrelated with unit variance. So if we can find linear transformations that does

the same, those linear transformation will be the rows in Ω−1/2. Note:see the parallel

to the heteroskedasticity case. Note, this is not always pointed out in textbooks, but

provides a very clear interpretation of the potentially mysterious inverse square root

matrix. (Davidson and MacKinnon explain things similarly to this note, so you can look

there for a parallel alternative treatment.) Let us ignore the mean term, for simplicity,

even if you will have it in your estimations. The economic content of the AR(1) is that

Et−txt = axt−1 but this means that Et−1(xt− axt−1)xt−1 = 0 (you can show that by the

simplest application of the law of iterated expectations). Or more generally, xt − axt−1
is independent of all previous observations. But then we are almost done, we just need

to think about the first observation. It has variance σ2
u

1
1−a2 , so we can normalize it to

get variance σ2
u. What I am saying is that

Ω−1/2 =
1

σu


√

1− a2 0 0 ... 0 0

−a 1 0 ... 0 0
...

0 ... −a 1

 ,

is the matrix we are looking for. Now verify that Ω−1/2x gives you independent ob-

servations (with variance 1). (It gives you the innovations terms and a rescaled first

observation.) If you want, go ahead and multiply Ω−1/2ΩΩ′−1/2 and verify that you get

an identity matrix (using T = 3 should be enough to convince you). With these insights
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we can discuss various common ways of estimating the AR(1) model and understand

how they all are related to each other.

1. Maximum Likelihood using the full variance matrix:

max l(µ, σu, a) = −0.5 log |Ω| − 0.5(x− E(x))′Ω(a, σ2
u)
−1(x− E(x)) ,

where Ω = Ω(a, σ2
u), which is just a way of saying that the variance matrix is a function

of a and σu, although I suppress this in the following for simpler expressions. Note: you

would have fill in the formulas for Ω you could speed things up a lot of you use the

formula for Ω−1, instead of having Matlab, or whatever matrix program you use, invert

the matrix. But, because the formula for Ω−1/2 is so simple, I would do

max l(µ, σu, a) = −0.5 log |Ω| − 0.5 (Ω−1/2(x− µ

(1− a)
))Ω−1/2(x− µ

(1− a)
) , (∗)

where I put in the value for E(x). Note: it is super easy to find the determinant of a

diagonal matrix, because it is just the product of the diagonal elements, so (ignoring

σu for simplicity) |Ω−1/2| =
√

1− a2 so |Ω−1| = 1− a2 so |Ω| = 1
1−a2 . Another way

of doing maximum likelihood for autoregressive processes is to use that f(x1, ..., xt) =

f(x1)f(x2|x1)....f(xt|xt−1, ..., x1). (This is try for all processes, but for the autoregressive

processes, this is easy except for the first observation. (Actually, the first k for a AR(k),

we will stick to the AR(1).) Using that xt conditionally on xt−1 has mean µ + axt−1

and variance σ2
u and we know the distribution of the first observation (the unconditional

distribution) we get (realizing that all observation has a factor σ2 in the variance) the

log-likelihood function

−0.5T log σ2 − 0.5T log (1− a2)| − 0.5
(x1 − µ

(1−a))
2

σ2
u/(1− a)2

)− 0.5Σt=1T
(xt − µ− ax2t−1)

σ2
u

.(∗∗)

Now, the point is that (*) and (**) is exactly mathematically the same thing. The

GLS-transformation is conceptually the exact same thing as the sequential conditioning.

So why do it twice over. Because sometimes (see MA-model below) we are actually

not able to find simple formulas for the conditional distributions. Even for an AR(3)

and higher, it takes significant work the find the distribution of the initial observations.
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But we might easily be able to find the variance covariance matrix. When we later do

simultaneous equations, we may have a low dimensional covariance matrix and we then

do not want to put any model restrictions on it, but estimate it and its inverse. This is

one important reason why you have to understand this material. For the time series, T

is often a large number and in that case writing out the full Ω matrix becomes infeasible

(or, rather, it becomes infeasible for Matlab to hold it all in memory and invert it).

2. Maximum likelihood conditioning on the first observation. This means that you

just drop the first observation. In this case you are minimizing the sum of squares and

this is equivalent to OLS (except the ML estimator of the variance divides by T instead

of by the degrees of freedom. If you sample is very large and/or the true a is not too

close to 1, it makes little difference. If you data are not stationary, you have to condition

on the first observation.

3. Cochrane-Orcutt two-step estimator. This is a feasible GLS estimator ignoring

the first observation. It is usually done in the context of a regression:

yt = µ+ βxt + et ,

where et = aet−1 + ut. (This is the previous model in a slightly different form: notice

that et = yt − µ− βxt, so it clear that the demeaned yt follows an AR(1) model.) The

Cochrane-Orcutt procedure estimates µ̂ and β̂ (consistently) by OLS, which gives a first

estimate of êt. It then regresses êt on its own lag and obtains â. And then it calculates

ỹt = yt − âyt−1 and x̃t = yt − âxt−1 (same for all regressors, if there are several, except

the constant) and estimates

ỹt = µ′ + βx̃t + ut ,

by OLS. (The intercept here would be (1− a)µ so you would correct for this if you are

interested in the mean.)

4. Prais-Winsten two-step estimator. The first steps is the same as for the Cochrane-

Orcutt estimator. However, you do not discard the first observation but define ỹ1 =
√

1− a2 y1 and x̃1 =
√

1− a2 x1 and then perform OLS using all T transformed observa-

tions. This is the same as 2-stage feasible GLS (if you want this to be literally true, you

also transform the vector of ones that multiply µ) and, as for the likelihood estimator,

6



inclusion of the first term can matter significantly if a is numerically close to unity.

MA models.

Let us now consider the scalar MA process.

xt = µ + ut + b1ut−1 + ... + blut−l ,

If you assume that the initial values u0, u−1, ..., u−l are all zero then we have

u1 = x1 − µ

u2 = x2 − µ − b1u1

and in general

ut = xt − µ − b1ut−1 ... − blut−l .

In order to use the above equations for estimation one has to calculate u1 first and then

u2 etc. recursively.

Now the ut terms has been found as functions of the parameters and the observed

variables xt. These equations are very convenient to use for estimation since the uts are

identically independently distributed, so that the likelihood function Lu in terms of the

ut has the simple form

Lu(u1, ..., uT ;ψ) = ΠT
t=1

1√
2πσ2

e
−u2t
2σ2 ,

where ψ is the vector of parameters of the model. Now, unfortunately it is not the ut’s

that we observe; but rather the xt vector. The equations above however gives ut as a

function of the xts so the likelihood function Lx(x1, ..., xt;ψ) (where b is the vector of

parameters of the MA-model) is just

Lx(x1, ..., xT ;ψ) = Lu(u1(x1), ..., uT (x1, ..., xT );ψ)ΠT
t=1

1√
2πσ2

e
−ut(x1,...,xt)

2

2σ2 .

1

1Be aware that most of the parameters of the likelihood function in this notation are implicit in
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The strategy of assuming the initial values of the innovation to be zero will not have

any influence in large samples; but it may not be advisable in small datasets. It is not

possible to find a convenient expression for the exact likelihood function. but this is

very messy in general and usually not used. If we do not make arbitrary assumption

about the initial innovations is complicated to estimate the MA model (and therefore

also the ARMA models) because the uts are unobserved. It turns out that one can esti-

mate the model by a very general algorithm, called the Kalman Filter, that is incredibly

useful—in particular for estimating models with unobserved components. But we will

not cover this in Econometrics II.2 However, you can (unless the sample is too large) es-

timate the model using the full variance matrix. I will illustrate this for an MA(1) model.

For the model,

yt = µ+ ut + but−1 ,

the mapping from xts to uts. Note that in general, you have to be careful when making this kind

of substitutions in likelihood functions. The rule for changing the variable of the likelihood function

through a transformation is that if

y = f(x) ,

where x and y are both T-dimensional vectors, and f is a one-to-one mapping, that often will depend

on parameters, of RT onto RT (or relevant subsets), then

Ly(y1, ..., yT ) = Lx(f
−1(y1, ..., yT ))|Df−1(y)| = Lx(f

−1(y1, ..., yT ))
1

|Df(f−1y)|
.

The last two forms are equivalent; but the last mentioned is often the most convenient form. The

matrix Df with i, jth element Dfij = ∂fi
∂xj

is known as the Jacobian matrix of the mapping (or

transformation). In the application to the MA-process you can check that u as a function of x has

unit Jacobian (so that the Jacobi-determinant is unity). You should also be aware that if the Jacobi-

determinant is a function of the observations but not of the parameters, then it can be ignored for the

purpose of maximizing the likelihood function, and this is often done without comment in the literature.
2In Hamilton’s Time Series book, he outlines another iterative method.
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it is easy to find the variance matrix, as the (stationary) variance matrix is

Ω = σ2
u


1 + b2 b 0 ... 0 0

b 1 + b2 b ... 0 0
...

0 0 0 ... b 1 + b2

 .

However, there is no simple formula for the inverse or the inverse square root. This

leaves you with 1. Maximum Likelihood using the full variance matrix:

max l(µ, σu, b) = −0.5 log |Ω| − 0.5(x− µ)′Ω(b, σ2
u)
−1(x− µ) ,

where you let the computer do the inverse (so this is limited to not-too-large sample).

Or 2., you use Kalman filter which we will not cover here but is a way to sequen-

tially have the computer find the terms in an expansion of the form f(x1, ..., xt) =

f(x1)f(x2|x1)....f(xt|xt−1, ..., x1).
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