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1 Truncation, Censoring, and Selectivity

1.1 Truncation

Consider the case of a regression model with a truncated sample. We assume

yi = Xiβ + ui ,

where ui is normally distributed with variance σ and the “OLS-assumptions” are satis-

fied. Data with yi > K are discarded for some number K (which is often normalized to

0 in textbooks).

The probability that an observation from a distribution with density f is in a small

interval of length ∆y around yi is f(yi)∆y. (Strictly speaking it would be
∫ yi+ ∆y

2

yi−∆y
2

f(y)dy).

While densities are not probabilities, it is much easier to use the shorthand of talking

about the probability of yi. So, because we only have a truncated sample the probability

of observing yi in the truncated sample is the unconditional probability divided by the

probability that y < K as an application of P (A|B) = P (A
⋂
B)/P (B). Here, A is

([yi − ∆y/2, yi + ∆y/2] and the probability of A is f(ui)∆u = f(yi − Xiβ)∆u when

yi < K (so B here is the set yi < K and the density is zero outside the set B). For f

being the normal density (with φ denoting the standard normal) we have the probability

in the numerator being 1
σ
φ(yi−Xiβ

σ
) . We have that the probability in the denominator

is P (yi < K) = P (Xiβ + ui < K) = Φ(K−Xiβ
σ

). In total we have the truncated density

(the limit of ∆y going to zero) for observation i:

φ(
yi −Xiβ

σ
)/(σΦ(

K −Xiβ

σ
)) .

As you can convince yourself, this is a density (positive and integrating to unity). The

log likelihood function (ignoring the π term) is

ΣN
i=1 − 0.5 log σ2 − 0.5

(yi −Xiβ)2

σ2
− log Φ(

K −Xiβ

σ
) .
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1.2 Censoring

Consider the case of a regression model with a censored . We assume

y0
i = Xiβ + ui ,

where ui is normally distributed with variance σ and the “OLS-assumptions” are satis-

fied. Data with y0
i > K are transformed to yi = K.

Here I managed to make it confusing in the 9/11 lecture. The probability that an

observation is in a small interval of length ∆y = ∆u around yi is f(yi)∆y is NOT

conditional. f(ui)∆u = f(yi − Xiβ)∆u is the probability of being in the ∆y interval

when y < K. The only other value y can take is yi = K and the probability of this is

P (y0
i > K) = 1− Φ(K−Xiβ

σ
).

The log-likelihood function is therefore

ΣN
i=1I{yi < K} ∗ [−0.5 log σ2 − 0.5

(yi −Xiβ)2

σ2
] + I{yi = K} ∗ log (1− Φ(

K −Xiβ

σ
)) .

Davidson and MacKinnon point out that you can add and subtract log Φ(K−Xiβ
σ

), in

which case the likelihood has the form of a sum of a truncated likelihood and a Probit

likelihood (with σ identified from the first part). Conceptually this is writing the first

part as P (A) = P (A|B)P (B) where A here is the probability of falling in a small interval

around yi andB is the event yi < K. This is not important and may instead be confusing.

1.3 Selection

The general normal selection model is one where y is observed based on some outcome

z which we model as a Probit. There are a huge number of applications of this. Say,

y is the GPA of a student at, say, Rice, and z is literally the probability of getting

selected (admitted) [ignore that students may decline]. U.S. college admission typically

depend on a large number of variables such as which state you came from, whether your

parents are alumni, and on and on. Assuming you have a sample of students, you might

have data for many of these variables but not others. For example, you would likely
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not observe the quality of the student’s essay and this would go into the error term in

the admissions equation. If the quality of the students essay also is correlated with the

students performance, you would have more efficient inference taking into account that

now the errors in the GPA equation is correlated with the error in the selection equation.

More importantly, you will get bias if you do not control for this.

Assume that

y0
i = Xiβ + ui ,

and

z0
i = Wiγ + vi .

We assume the error terms are normal and independent across individuals (or whatever

the i index stands for). We observe

zi = 1 if z0
i > 0; 0 otherwise

and

yi = y0
i if zi = 1 .

If individual i is not selected, we do not observe yi.

Denote the variance of ui by σ2. The variance of vi is (as usual for a Probit model)

not identified and it is normalized to 1. The covariance of two random variables can al-

ways we written as the correlation times the standard deviations of the variables. Here,

it is convenient to label the correlation ρ and the covariance is then ρ σ.

We want to study the distribution of yi conditional on zi = 1. We therefore study

the conditional distribution of ui conditional on zi = 1. This is somewhat difficult

because zi = 1 is a set of vi’ s. The trick therefore is to use the identity

P (A|B) = P (B|A)P (A)/P (B) .

In our application we want to write P (ui|zi = 1) as P (zi = 1|ui)P (ui)/P (zi = 1)

because we can easily find the three terms involved. P (ui) is just the normal density
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and P (zi = 1) is a Probit probability. That last term involves zi which is a function of

z0
i and we know how to find conditional normals. The mean of z0

i conditional on ui is

Wiγ + ρσ
σ2 (ui − 0) = Wiγ + ρ

σ
ui, by the usual formula for normal conditionals, and the

conditional variance is 1− (ρσ)2

σ2 = 1− ρ2. So

P (ui = 1|zi) = Φ(
Wiγ + ρ

σ
(yi −Xiβ)√

1− ρ2
) .

Now we can write the density for yi conditional on zi = 1 as

P (zi = 1|ui) = Φ(
Wiγ + ρ

σ
(yi −Xiβ)√

1− ρ2
) ∗ 1

σ
φ(

(yi −Xiβ)

σ
)/Φ(Wiγ) .

The full likelihood becomes this probabilityP (ui|zi = 1) times the probability P (zi = 1)

“plus” the probability zi = 0; i.e.:

I(zi = 1) ∗ [Φ(
Wiγ + ρ

σ
(yi −Xiβ)√

1− ρ2
) ∗ 1

σ
φ(

(yi −Xiβ)

σ
)] + I(zi = 0) ∗ [1− Φ(Wiγ)] .

The log-likelihood is after re-ordering a bit:

ΣN
i=1I(zi = 1)∗[−0.5 log σ2−0.5

(yi −Xiβ)2

σ2
+log Φ(

Wiγ + ρ
σ
(yi −Xiβ)√

1− ρ2
)]+I(zi = 0)∗log Φ(−Wiγ) .

Notice what happens if ρ = 0: you have a Probit model and an independent normal

which you can estimate by least squares. True, it is strange that y is only observed when

z = 1, but you do not have to adjust the least squares estimation in the case where the

error term in the selection equation is not affecting the error term in the regression.

1.3.1 Heckman correction term for selection

Heckman was the first to consider correction for selection (in his thesis, I think) and this

was the basis for his later Nobel prize.

The Heckman correction involves as two-step estimator. Assume you first estimate the

Probit equation and then the regression (not recommended—it is always most efficient
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to estimate the full system, but sometimes we do anyway, at least in a first exploration

and earlier it may have been hard numerically to estimate the full system).

Consider the regression

yi = Xiβ + ui ,

where you ignore that yi has been selected based on z. The problem now is that Eui = 0

if you observed all outcomes (including the ones that were not selected) but if E(ui|vi) =

ρσvi, which is easy to see using the standard formula for conditional normals, we are

allowed to write ui as ρσvi + ei where ei = ui − ρσvi is independent of vi. We have

yi = Xiβ + ρσvi + ei ,

where ei is independent of Xi but because vi is instrumental in deciding whether yi was

observed, it is unlikely to have mean zero. In fact, E(vi|zi = 1) = E(vi|Wiγ + vi > 0) =
φ(Wiγ)
Φ(Wiγ)

, where ratio is called the inverse Mill’s Ratio.1 If you have estimated the first

state you have an estimate γ̂ and you run the regression

yi = Xiβ + κ
φ(Wiγ̂)

Φ(Wiγ̂)
+ ei ,

which is a consistent estimator of β (and approximately unbiased if γ is well estimated).

Usually, economists do not attempt to extract the parameters ρ and σ.

1To derive the inverse Mill’s ratio notice that
∫
x exp (−x2/2)dx =

∫
exp (−x2/2)(xdx) and do a

change of variables to y = x2

2 with dy = xdx.
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