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Bias of the OLS estimator when the regressor is measured with error.

Consider a regression model of form
yi = o + fr; .

Under the standard OLS assumptions (z; fixed, Fu; = 0, Fu;u; = 0 when ¢ # j and
constant variance of the u;s) the efficient OLS-estimator of 5 (based on N observations)
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(Note: you can assume the variables are demeaned if you want simpler notation.)

Now, because
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For N — oo, we have + Y (z; — Z)(u; —u) — 0 and + Y(2; — )? — var(z), so the right
hand side converges to zero; i.e., the OLS estimator is consistent (8 — [3).
If x; is measured with error, this consistency result does not hold. Assume
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where e; is a “classical measurement error” where Fe; = 0, Fee; = 0;7 # j and
Eeju; = 0;Vi,j. Now, if you regress y on z* using the OLS formula, 3 will be biased
towards zero; i.e. E|5| < E|S].

This is easy to demonstrate: We have
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where the second and third terms in the numerator converges to 0 by the law of large
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numbers. We then have
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This demonstrates that B converges to the true [ times a term numerically smaller than
1. We say that (classical) measurement error leads to “bias towards zero.” Notice, that
if your main task is to show that some 3 is non-zero and the coefficient is significant,
then it is usually safe to assume that the numerically larger coefficient you would get
is significant. (In small samples, I should say “would most likely get” because random
variables are random.)

The result here is much more applicable than it looks at first blush. We usually es-
timate multiple regression models, but if your variable of interest is measured with error
and the controls are not, then the Frisch-Waugh residual My, X from regression on the
controls W only has the measurement error coming from X and the result from the
univariable regression is back. If there is measurement error in W instead, there will be
measurement error in My, X but it won’t be classical measurement error, so you need to
convince yourself, if you can, that the problem is minor, for example because X is almost
orthogonal to the W (although this is usually not the case). Or maybe you have an idea
of the variance of the measurement error in W and you can do a little simulation study
to evalue how much it may affect X. Or...use common sense, but educated common
sense using the insights from this note.g



