

ECONOMICS 7330 – Probability and Statistics, Fall 2025

Homework 8. Due Wednesday November 19.

1. Let X be distributed Poisson: $\pi(k) = \frac{\exp(-\theta)\theta^k}{k!}$ for nonnegative integer k and $\theta > 0$.
 - (a) Find the log-likelihood function $l_n(\theta)$.
 - (c) Find the asymptotic variance of $\hat{\theta}$. (That is σ^2 where $\sqrt{N}(\hat{\theta} - \theta)$ converges in distribution $N(0, \sigma^2)$.)
2. Assume that you have a sample of n observations from an exponential distribution with density $f(x) = \frac{1}{\theta} \exp^{-\frac{x}{\theta}}$. (The mean is θ and the variance is θ^2).
 - a) Write down the log-likelihood function $l_n(\theta)$.
 - b) Find the asymptotic limit $l(\theta) = \lim_{n \rightarrow \infty} \frac{1}{n} l_n(\theta)$.
 - c) Show that the value of θ that maximizes $l(\theta)$ is equal to the “true” value that generated the data.
3. Consider the exponential model with density

$$f(t_i) = \frac{1}{\lambda_i} \exp(-t_i/\lambda_i),$$

where λ_i is the mean (in a major application of the exponential distribution it is the expected waiting time for individual i). We assume we have a sample of N persons. We cannot estimate a parameter for each person, but we can estimate the effect of covariates by assuming $\lambda_i = x_i \beta$, where we now have a limited number of parameters as the dimension of β is the number of covariates (“regressors”) included. (This is how we usually use the model.)

- i) Find the Score and Hessian (or what Hansen calls “Likelihood Hessian” which is multiplied by -1). Note that when λ_i varies with i you need to find the expectation for each i taking t_i as a random variable. The expression of course takes the same form for each i apart of the x_i that depends on i . Also assume the Law of Large numbers hold. (Note that the parameter is now β . In general, β is a vector, but you could start by solving the univariate case.)
- ii) Use this to write down the asymptotic distribution for $N(\hat{\beta} - \beta)$.