ECONOMICS 7330 – Probability and Statistics, Fall 2024

Homework 6. Due Wednesday October 9.

1. Assume that X and Y follow a normal distributions with means μ_x and μ_y . Denote the covariance between X and Y σ_{XY} and the variance of X σ_X^2 and similarly for the other variances covariances.

a) Write down the joint density of X and Y using scalars.

b) Find the conditional density F(X|Y) by dividing the density from part a) with the marginal density of Y.

c) Write down mean and variance of X, Y in vector/matrix form (the variance matrix is 2 by 2, for example). Write down the density in vector-matrix notation. (You have the formulas for the multivariate Normal, so be explicit what goes into the matrices.)

2. Assume $X \sim N(0,9)$, $Y \sim N(2,9)$, and $Z \sim N(2,16)$. Further assume that the covariance between X and Y is 2, while both X and Y are independent of Z. i) What is E(X|Y=2, Z=3)? (State the formula you use and then the number.) ii) What is the conditional variance Var(X|Z=3)? iii) What is E(X, Z|Y=3)?

3. Consider an i.i.d. sample $X_1, ..., X_N$. Define the residual $e_i - X_i - \overline{X}$. Verify that $\overline{X}e_i=0$.

4. Consider two i.i.d. samples $X_1, ..., X_N$ and $Y_1, ..., Y_N$ with X_i correlated with Y_i . Find the expected value of $\sum_{i=1}^N (X_i - \overline{X})(Y_i - \overline{Y})$.