ECONOMICS 7330—Probability and Statistics, Fall 2024

Homework 2. Due Wednesday September 4.

- 1. Let $X \sim U[0,1]$. Find the distribution function of $Y = \log(\frac{X}{1-X})$.
- 2. Define

$$F(x) = \begin{cases} 0 & \text{if } x < 0\\ 1 - e^{-x} & \text{if } x \ge 0. \end{cases}$$
 (1)

- (a) Show that F(x) is a CDF.
- (b) Find the PDF f(x).
- (c) Find E[X].
- (d) Find the PDF of $Y = X^{1/2}$.
- 3. Show that if the density satisfies f(x) = f(-x) for all $x \in R$ then the distribution function satisfies F(-x) = 1 F(x).
- 4. The skewness of a distribution (random variable X) with mean μ and standard deviation σ is skew = $\frac{E(X-\mu)^3}{\sigma^3}$.
- (a) Show that if the density function is symmetric about μ , then skew = 0.
- (b) Calculate skew for a random variable with density $f(x) = \lambda \exp{-(\lambda x)}, x \ge 0$.
- 3. Let X be a random variable with mean μ and variance σ^2 . Show that $E(X-\mu)^4 \geq \sigma^4$. (The fourth central moment is call *kurtosis*. This is a commonly used term that you need to know. For the standard normal the kurtosis is 3, so for a normal with variance σ^2 it is $3 \sigma^4$ and because the normal is sort-of a standard, we say that a distribution with higher variance than that has "excess kurtosis".)