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Parametric Bootstrap

Consider, for example, a linear model (although you more often would use

the bootstrap for more complicated models):

yi = Xiα+ ui ,

where we assume the OLS assumptions are satisfied and ui follows a known

distribution for i = 1, ..., N . Let us assume Normal but with unknown vari-

ance σ2. You would then do OLS and obtain α̂ and σ̂2.

Now you want to examine the distribution of some test statistic, say, a

t-test of one of the parameters being 0. More precisely, you would often look

for the critical values for a test; say, a 5% one-sided test (just to cut down

on notation, 2-sided would be similar).

Now you set a number of bootstrap replications, say 10,000. Then for

j = 1, ..., 10, 000 you draw a set of random normal variables eji ∼ N(0, σ̂2)

for i = 1, ..., N . Then you construct artificial dependent variables keeping

X constant:

yji = Xiα̂+ eji ,

for i = 1, ..., N . Now you have a new dataset and you can run a regression

and find α̂j and t̂j where the latter refers to the t-statistic for the test you

are interested in. (You don’t actually need to keep α̂j , although we often

take a look at its distribution.)
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You do this pulling of N error terms, constructing dependent variables, run-

ning the regression, and calculating the t-stat 10,000 times.

Now sort the t̂j values. These are randomly generated and we get a dis-

tribution of those, but if you just care about the critical values, as is often

the case, it is approximately the value taken by 95th percentile; i.e., obser-

vation number 9,500 in the sorted vector. This is the critical value generated

by your parametric Monte Carlo simulation and you can now we test if the

original α̂ (or its deviation from some non-zero value) is larger than that

critical value.

COMMENTS:

1. If you think the data normal and the model linear, you would not do

this, because we know the distribution is t-distributed and we can look

up the critical value in a table. But if the model is non-linear and you,

for example, rely on the Delta-rule (which you almost always do in the

non-linear case, if you use a Wald-test), you might want to simulate to

see if the first-order Taylor series approximation implicitly involved in

using the Delta-rule works well. (When would we think it works well?)

2. The number of Monte Carlo studies that you need can be as low as say

1,000 or as high as 1,000,000 or more...if you have errors from a heavy-

tailed distribution (meaning that only rarely will there be outliers, but

they may be large), you will need a large number.

3. If you have lagged y’s on the right-hand side, then you need to use the

time-series model for y. For example, if y follows an AR(k), you do
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this recursively, using the error terms that you draw in each iteration.

4. You can do this for any non-linear or whatever model. But you need

to assume a distribution of the innovations.

Non-Parametric Bootstrap

Here you estimate the model as before. Now you may worry that the errors

are not Normal, or more generally you just don’t know the distribution of

the innovation, so you then do not know the finite sample distribution of

the t-statistic (maybe we should then say “t-statistic” in quotes, as it is not

t-distributed). You could make up your own test-statistic, but usually we

use the standard t- and Wald (ξ-square) test statistics because we know that

they have good properties for Normal innovations.

You do the simulations as before. You do not draw from a Normal dis-

tribution but from the empirical distribution of the error terms from the

original estimation, ûi. You do this by selecting eji = ûk, where for each

i (in each iteration j) you chose k randomly, with equal probability, from

1, ..., N . Often people draw some Z from a uniform distribution on [0, N ] and

set k = l if l − 1 < Z ≤ l etc. All other steps are similar to the parametric

case.

Wild Bootstrap

You follow the previous methods but select eji = +/ − ûi or more precisely
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eji = ξiûi , where ξi = 1 or ξi = −1, each with probability 0.5. Notice, that

if the errors are correlated with x, the heteroskedasticity will be inherited

by the u-draws, but maybe not by the “+/ − u” draws. An improvement

can often be achieved by instead have the variable ξ take the values 1+
√
5

2 or

1−
√
5

2 with probabilities
√
5−1
2
√
5

and
√
5+1
2
√
5

, respectively. I have not yet worked

out the intuition for this.

Block Bootstrap

If the error terms are correlated, the bootstrap draws have to retain the

correlation structure. Think of the error terms et following an AR or MA

model. The simplest case is that of a panel with large N . Run the regres-

sion yit = Xitα + uit and obtain residuals ûit. Now you draw the T-vector

{ei1, ..., eiT } = {ûk1, ..., ûkT }, where for each i (in each iteration j) you chose

k randomly, with equal probability, from 1, ..., N and proceed as before.

If you have a time series think the error terms follow an MA(p) process, you

will for each t draw {et, ..., et+p} = {ûk, ..., ûk+p}, where for each t (in each

iteration j) you chose k randomly, with equal probability, from 1, ..., T − p.;

i.e., a block (overlapping) so that the variables in each block are of low cor-

relation on average. If the error terms are not following an MA(p) process,

you use the MA process as an approximation and do the same. For such

block bootstraps there are many permutations about how long the blocks

should be (that is, how large a p) and I am not an expert on this. If you

were to use this, I strongly suggest first trying to figure out the type of time

series model that captures the residuals and then doing a parametric Monte

Carlo study for this model to see how things work for your model.
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