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Weak Instruments

“Weak instruments” raises a lot of issues. As weak instruments are quite

common, this topic is of obvious importance, but there is no simple “right

method” that covers all situations. So this here is a survey of surveys and

you should be prepared to do further reading in many cases when you do

your own research.

To get the basic intuition, consider the simplest linear model

yi = βxi + σuui ,

where we suppress the constant, and assume that xi and ui are correlated.

(I here follow Davidson-MacKinnon, page 326.) Note, that if there are other

regressors, we can think of this regression as the one we get after removing the

other variables using Frisch-Waugh. Let us assume ui is normally distributed

with variance 1. We also assume that

xi = πzi + σvvi ,

where vi is normal with variance 1. We assume that the correlation of x

with u occurs because the covariance between u and v is ρ, while z is a valid

instrument for x if π is non-zero. We will use X, Z, and Y to denote a sam-

ple of N observations. We keep N fixed. (We know that IV is consistent.
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Here we want to examine small-sample properties.)

The IV (2SLS) estimator is

βIV = (Z ′X)−1Z ′Y = (Z ′X)−1Z ′(βX + σuU)

or

βIV = β + σu(Z ′X)−1Z ′U

or

βIV − β = (Z ′(πZ + σvV ))−1σuZ
′U .

Now notice that we can assume Z ′Z = 1. Why? Because you can always

change the units in which you measure your instrument and in this case, it is

convenient to re-scale them so the vector has length unity which cuts down

on clutter (here we use that we consider the regression for a fixed N). We

have

βIV − β =
σuZ

′U

π + σvZ ′V

Here, it is easy to see that the IV estimator is NOT unbiased because the

OLS-bias is caused by U being correlated with V (in the OLS case, the

denominator is not stochastic, so the expectation of the right-hand side is 0,

because we have a bunch of constant stuff times E{U}).

It is convenient to write ui = ρvi + u1i using the formula for conditional

normal expectations (so that ρvi is the expectation of ui conditional on vi

and u1i is independent of v. We want to show that the expression for βIV −β
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can have crazy outliers, which we demonstrate by showing that it does not

have a finite expected value. We use the law of iterated expectations and

get

E{βIV − β} = E{E{βIV − β|V }} = E
σuρZ

′V

π + σvZ ′V
,

where we have taken the expectation E{U1|V } = 0 and now have only

the expectation over V left. Now we will use our normalization. Z ′V is

ΣN
i=1zivi so it has mean 0 (all the terms have mean zero) and variance

ΣN
i=1z

2
i = 1 (or course, this is just using the formula that var(V ) = I so

var(Z ′V ) = Z ′IZ = 1. So Z ′V is a scalar normal variable with mean 0 and

variance 1, which we denote z. So, taking the expectation with respect to V

is equivalent to taking the expectation with respect to z.

Now, multiply and divide the constants using elementary algebra and you

end up with the expectation

E
ρσu
σv

z
π
σv

+ z

The expectation does not exist as you can verify. (What happens is that

there is positive probability of z ≈ − π
σv

where we are dividing by almost 0,

so the ratio gets so big that is does not integrated to a finite number.)

The intuition is simple. We estimate the first-order regression

x̃i = π̂zi ,
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and then do the second order regression

yi = β(π̂zi) + ei ,

which implies that the β coefficient is identified from the reduced form

yi = γzi + εi ,

as β̂ = γ̂
π̂ . Here, it is obvious that we can get numerically large values for β̂

if the estimate of π is very small. You may also have the sign of β̂ flip. If the

true value of π is large, this is unlikely to be a problem in practice, but if the

true value of π is near zero, you can get very bad estimates. The situation

where π is non-zero (and therefore asymptotically valid), but very small (and

therefore giving noisy, often useless, estimates) is referred to as the having

“weak instruments.” For the case of many instruments, you regress X on Z

and get X̃ = Zπ̂ so the IV estimator becomes

β̂ = (X̃ ′X̃)−1X̃ ′Y = (π̂′Z ′Zπ̂)−1π̂′Z ′Y ,

and again you can see that small values of π may make the estimate of β

shaky. If the reduced form regression has a clear interpretation, you may be

better off focusing on that one.

Hahn and Hausman shows the following (see the JEP survey by Michael

Murray—I follow his simple exposition here, except I keep the notation from

above). Let the equation for x be more general with q regressors (again sup-
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pressing the constant).

xi = ziπ + σvvi ,

Let R2 be the R-squared from this regression. One can show, to a second-

order approximation, for N observations (although we will no have time for

derivations):

E{βIV } − β =
q ρ(1−R2)

NR2
.

As you can tell, this bias is near infinity if R2 is near 0. The bias is worse

the larger ρ is, and there is no bias if ρ = 0 (but then OLS is BLUE). More

surprising, if you add instruments that do not increase R2 the bias double

with the number of instruments. Intuitively, what happens is that by ran-

domness they will capture some of the variation in X—we know that if we

have N instruments, then we have a perfect fit in the first stage, and IV is

the same as OLS. You are expected to remember this formula, or at least

the content of it.

Hahn and Hausman also show that

Bias(βIV )

Bias(βOLS)
≈ q

NR2
.

from which you can tell that the IV estimator with many instruments can

be worse than OLS (also for the case of q = 1, if the R2 is really low).

In general, “what to do” is not fully settled, in particular if you have more
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than one endogenous variable.

Advice on dealing with potentially weak instruments.

1. Always display the results from the reduced form estimation. In cases

where you have one instrument, this sometimes gives a clear answer.

Example: you want to estimated the marginal propensity to consume

using a change in taxes as an instrument (here we assume that you

can find such an exogenous change, even if that is not so easy). The

reduced form will tell you if consumption reacts to the taxes and give

you a confidence interval, and this may answer most of what you want

to know.

2. You always have to show the first-stage estimation. This may be infor-

mative, but you need to know if you your instrument(s) is(are) weak.

3. Andrews, Stock, and Sun (2018) (ASS) provide practical advice on

testing for weak instruments:

(a) Common rule-of-thumb: Based on Stock and Yogo (2005), it has

become a “standard” rule-of-thumb for one instrument that the

first stage F-test should be larger than 10, so you would see that

used in papers. For two or three instruments, the rule of thumb

may be 20. You should consult Stock and Yogo (2005) for critical

values. However, Stock and Yogo’s critical values are assuming
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homoskedasticity, which is often not reasonable.

(b) ASS suggest that you use the recent adjusted “Efficient F-test”

of Montiel Olea and Pflueger instead. The Montiel Olea and

Pflueger (2013) adjusted F-test is

qσ̂2v

Trace[ ˆV ar(π̂)N(Z ′Z)]
F ,

where k is the number of instruments and ˆV ar(π̂) is the het-

eroskedasticity robust variance estimator. You can notice that

for one instrument, when there is no heteroskedasticy the vari-

ance of π̂ is σ2v(Z
′Z)−1 (the usual OLS variance) and this reduces

to F , which is the standard F statistic for testing all the instru-

ments being 0. You will have to look up the critical values but

for one instrument they are equal to the Stock and Yogo ones and

the rule of thumb of a value over 10 is probably good.

(c) If you have many endogenous variables, you can test if the instru-

ments are weak for each endogenous variable one-by-one. The

literature is not very explicit on this point.

(d) Non-parametric bootstrap tests are not valid in the weak instru-

ment case.

(e) You can do a parametric bootstrap to gain insights, but you would

then have to have a model for potential heteroskedasticity. (Al-

though, currently it seems that “everybody” wants to use estima-
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tors that allow for heteroskedasticity of unknown form.)

4. If you find clear evidence against weakness of your instruments, you

continue as usual. But note that you want to have much larger values

of the F-tests to feel comfortable. So how do you continue in the second

stage?

(a) If you suspect/cannot clearly reject weak instruments, use the

LIML estimator (or the slightly better Fuller estimator). You

may compare to the 2SLS estimator, but if they differ, LIML is

likely to be less biased. (The recent focus on weak instruments is

the reason why LIML is getting significant attention again.)

(b) In a recent useful paper, Lee, McCrary, Moreira, and Porter

(AER 2022) (LMMP), show that—for the case of one instrument

and one endogenous variable—you can explicitly adjust your t-

statistic based on the first stage F-test. Possibly using (the same!)

robust variance estimator for both stages. Their paper give ad-

justment factors (larger than 1) based on the first-stage F-test

that you can use to adjust the length of the second stage con-

fidence interval. The adjustment factor is non-neglible even of

F-values quite a bit larger than the Stock-Yogo rule-of-thumb.

(c) In general, there is no consensus about how to deal with many

instruments in the non-homoskedastic case and ASS has no clear
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recommendation. If you are in the situation with more than one,

but weak, instruments, look up the tests suggest in ASS. If you

have a model for potential heteroskedasticity (for example, the

variance goes down with size of the unit) you can do the first stage

GLS transformation (in this case, just weighing the variables) and

get back to the homoskedastic situation.

(d) For the case of many endogenous variables and weak instruments,

life is harder. If one endogenous variable has strong instruments,

you can use a Frisch-Waugh procedure, but if you have more than

one weak instrument, it is not obvious how to construct second-

stage valid t- or F-statistics. ASS discuss this case, but as they

do not give any clear recommendation and you will need to put

in work to decide what do to. Maybe the best you can do is to

show robustness. However, this weak IV literature is constantly

evolving (I didn’t know about the useful LMMP paper a year

ago!) so ask, Google, and look at Web-pages of people like Stock

and the Andrews’es etc.) for recent work.
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