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Weak Instruments

“Weak instruments” raises a lot of issues. As weak instruments are quite common, this topic

is of obvious importance, but there is no simple “right method” that covers all situations. So this

here is a survey of surveys and you should be prepared to do further reading in many cases when

you do your own research. This survey-of-surveys is also shorter than I would have liked because

we are about out of time.

Consider the linear model

yi = βxi + σuui ,

where we suppress the constant, and assume that xi and ui are correlated. (I here follow Davidson-

MacKinnon, page 326.) Let us assume ui is normally distributed with variance 1. We also assume

that

xi = πzi + σvvi ,

where vi is normal with variance 1. We assume that the correlation of x with u occurs because the

covariance between u and v is ρ, while z is a valid instrument for x if π is non-zero. We will use X,

Z, and Y to denote a sample of N observations. We keep N fixed. (We know that IV is consistent.

Here we want to examine small-sample properties.)

The IV (2SLS) estimator is

βIV = (Z ′X)−1Z ′Y = (Z ′X)−1Z ′(βX + σuU)

or

βIV = β + (Z ′X)−1Z ′U

or

βIV − β = (Z ′(πZ + σvV ))−1Z ′U

Now notice that we can assume Z ′Z = 1. Why? Because you can always change the units in which

you measure your instrument and in this case, it is convenient to re-scale them so the vector has

length unity (here we use that we consider the regression for a fixed N). We have

βIV − β =
σuZ

′U

π + σvZ ′V

Here, it is easy to see that the IV estimator is NOT unbiased because the OLS-bias is caused by U

being correlated with V (in the OLS case, the denominator is not stochastic, so the expectation of

the right-hand side is 0, because we have a bunch of constant stuff times E{U}.
It is convenient to write ui = ρvi + u1i using the formula for conditional normal expectations

(so that ρvi is the expectation of ui conditional on vi and u1i is independent of v. We want to show



that the expression for βIV − β can have crazy outliers, which we demonstrate by showing that it

does not have a finite expected value. We use the law of iterated expectations and get

E{βIV − β} = E{E{βIV − β|V }} = E
σuρV

π + σvZ ′V
,

where we have taken the expectation E{U1|V } = 0 and now have only the expectation over V

left. Now we will use our normalization. Z ′V is ΣN
i=1zivi so it has mean 0 (all the terms have

mean zero) and variance ΣN
i=1z

2
i = 1 (or course, this is just using the formula that var(V ) = I so

var(Z ′V ) = Z ′IZ = 1. So Z ′V is a scalar normal variable with mean 0 and variance 1, which we

denote z. So, taking the expectation with respect to V is equivalent to taking the expectation with

respect to z.

Now, multiply and divide the constants using elementary algebra and you end up with the ex-

pectation

E
ρσu
σv

z
π
σv

+ z

In the homework, we showed that the this expectation does not exist. (What happens is simply

that there is positive probability of z ≈ − π
σv

where we are dividing by almost 0.)

The intuition is simple. We estimate

x̃i = π̂zi ,

and then regress

yi = β(π̂zi) + ei ,

which implies that the β coefficient is identified from the reduced form

yi = γzi + εi ,

as β̂ = γ̂
π̂ . Here, it is obvious that we can get numerically large value for β̂ because the estimate of π

is very small. You may also have the sign of β̂ flip. If the true value of π is large, this is unlikely to

be a problem in practice, but if the true value of π is near zero, you can get very bad estimates. The

situation where π is non-zero (and therefore asymptotically valid), but very small (and therefore

giving noisy, often useless, estimates) is referred to as the having “weak instruments.” For the case

of many instruments, you regress X on Z and get X̃ = Zπ̂ so the IV estimator becomes

β̂ = (X̃ ′X̃)−1X̃ ′Y = (π̂′Z ′Zπ̂)−1π̂′Z ′Y ,

and again you can see that small values of π may make the estimate of β shaky.

Hahn and Hausman shows the following (see the JEP survey by Michael Murray—I follow his



simple exposition here, except I keep the notation from above). Let the equation for x be more

general with q regressors (again suppressing the constant).

xi = ziπ + σvvi ,

Let R2 be the R-squared from this regression. One can show, to a second-order approximation, for

N observations (although we will no have time for derivations):

E{βIV } − β =
q ρ(1−R2)

NR2
.

As you can tell, this bias is near infinity if R2 is near 0. The bias is worse the larger ρ is, and there

is no bias if ρ = 0 (but then OLS is BLUE). More surprising, if you add instruments that do not

increase R2 the bias double with the number of instruments. Intuitively, what happens is that by

randomness they will capture some of the variation in X—we know that if we have N instruments,

then we have a perfect fit in the first stage, and IV is the same as OLS. You are expected to

remember this formula, or at least the content of it.

Hahn and Hausman also show that

Bias(βIV )

Bias(βOLS)
≈ q

NR2
.

from which you can tell that the IV estimator with many instruments can be worse than OLS (also

for the case of q = 1 if the R2 is really low).

Some advice on estimation: I suggest that you always display the results for the first-stage es-

timation. In cases, where you have one instrument, this sometimes gives a clear answer. Example:

you want to estimated the marginal propensity to consumer using a change in taxes as an instru-

ment (here we assume that you can find such an exogenous change, even if that is not so easy). The

reduced from will tell you if consumption reacts to the taxes and give you a confidence interval,

and this may answer most of what you want to know.

If you suspect weak instruments, use the LIML estimator (or the slightly better Fuller estima-

tor). You may compare to the 2SLS estimator, but if they differ, LIML is likely to be less biased.

(The recent focus on weak instruments is the reason why LIML is getting significant attention

again.)

Andrews, Stock, and Sun (2018) (ASS) provide practical advice on testing for weak instruments.

The “standard” rule of thumb for one instrument is that first stage F-test should be larger than

10. For two or three instruments, you should probably use 20. You should consult Stock and Yogo

(2005) for critical values. Although, you might want to do a Monte Carlo study yourself, you can

adapt the code from the home-works, it is not hard, and it can buy you a lot of credibility. But note

that the test-statistics in Stock and Yogo (2005) are based on an assumption of heteroskedasticity.



ASS points out that many papers in AER use the Stock-Yogo rule-of-thumb but then proceed to

use White heteroskedasticity-robust standard errors (which doesn’t square with using the F-test

that relies on homoskedasticity). ASS suggest that you use the Montiel Olea and Pflueger (2013)

adjusted F-test. I would point out that in many cases, you may have a model for potential het-

eroskedasticity (for example, the variance goes down with size of the unit) and in this case you can

do the first stage GLS transformation (in this case, just weighing the variables) and get back to

the homoskedastic situation.

ASS suggest that you use Anderson-Rubin confidence intervals for your parameters of interest

in just identified models. (We won’t have time to discuss the logic of those, but consult ASS when

you need this in your research.) For the over-identified homoskedastic case, they suggest using the

likelihood ratio statistic of Moreira (2003).

For the case of manu endogenous variables and weak instruments, life is harder. ASS has dis-

cussion of this case but you will need to put in work to decide what do to. But make sure to show

your first-stage and reduced-form regression. Frisch-Waugh partial correlation plots are always

good at signaling outliers and Monte Carlo studies are good (although, you cannot do those with

heteroskedasticity of unknown form, you have to chose the model to simulate.)

The final advice is for your future work is to search for recent literature on weak instruments

to make sure you know the most recent progress from top econometricians like Jim Stock.


