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INTEREST RATE THEORY

We will cover fixed income securities. The major categories of long-term fixed income securities are

federal government bonds, corporate bonds, mortgages, and municipal bonds. Government bonds

can be considered risk free whereas other bonds have a risk of default. Some bonds are callable or

convertible. (Fixed income securities are covered in “Asset Pricing” Cochrane, Chapter 19 and in

“The Econometrics of Financial Markets” by Campbell, Lo, and MacKinlay Chapters 10 and 11.)

We will not consider default risk and the pricing of callable bonds because it is better to understand

the simplest case before adding the complications that arise from callability, default risk, etc.

Most longer term bonds are coupon bonds. This means that they pay a fixed amount of inter-

est at given points in time (the coupon payment) and a principal payment (the nominal value

of the bond) at maturity. The nominal value is also called the “face value” or “par value.” Normally

the interest payments are equi-spaced, by which I mean that they pay interest every month, half

year or year. Government bonds usually pay interest semiannually. We will typically use the con-

vention that you can buy the bond at time t = 0 for a price P0 and we denote the time to maturity

by T . NOTE that T is the number of periods that the bond pays interest. The cash flow to a

bond will be denoted C(1), ..., C(T ). For a 4 year bond with a nominal value of 1000$ and annual

interest payments of 50$ the cash-flows will be C(1) = C(2) = C(3) = 50$ and C(4) = 1050$. The

coupon payment divided by the face value is called the coupon rate, or current yield and the

coupon rate in the example will be .05 or 5%. The yield to maturity of a bond with a cash flow

C(t), t = 1, ..., T and a price of P0 is the value y that solves the equation

P0 =
T∑
t=1

C(t)

(1 + y)t
.

For the 4 year bond considered above, assume that the price today is 900$. The yield to maturity

will then be the y that solves

900 =
50

1 + y
+

50

(1 + y)2
+

50

(1 + y)3
+

1050

(1 + y)4
.

You can solve this and find y = 8.02%. Actually, since the equation is not linear, you may not be

able to solve it unless you have a suitable calculator (or computer program). The yield correspond

to a constant safe rate annual rate of interest. If the safe rate of interest was y then 1$ today could

be saved and you would have (1 + y)$ next year. Or to put it another way, 1$ next year would

be worth 1/(1 + y)$ today. Similarly 50$ next year would be worth 50/(1 + y)$ today. And since

1$ saved for 2 years would be worth (1 + y) ∗ (1 + y) = (1 + y)2, we value 50$ in two years as
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50/(1 + y)2$ today. If the price of the bond today was 1000$, rather than 900$, you would find

that the yield was 5%. In general, the yield to maturity is equal to the coupon rate if the price of

the bond in the special case where the price of the bond is equal to its face value.

We will make quite heavy use of yet another yield concept, namely the spot rate. Spot rates

are the yields to bonds that only make one payment. Such bonds are called pure discount bonds

or zero-coupon bonds. They play a central role in the theory for the term structure of interest

rates, but they have also lately become important in the financial market. The government usually

issues discount bonds at short maturities (treasury bills) and coupon bonds at longer maturities,

but many brokerage firms now buy longer term coupon bonds and sell the right to the interest

payments and the right to the principal separately – this way creating “artificial” long term gov-

ernment discount bonds. (These principals which are stripped of the interest rate payments are

known as “strips”).

The one year spot rate is defined as the yield on a pure discount bond of one year maturity.

(Spot rates are normally quoted as 2 times the six-month rate but I will assume here that interest

payments are annual in order to not clutter up the notation). So for a discount bond paying X$ in

one year with a present price of P0, you find the spot rate from solving

P0 =
X

1 + S1
⇒ S1 =

X

P0
− 1 .

For example: If P0 = 970.87 and X = 1000, then S1 = 3%. You find the 2-year spot rate as the

yield to a 2-period zero-coupon bond, i.e. for a zero-coupon bond paying off X after 2 years:

P0 =
X

(1 + S2)2
⇒ S2 =

√
X

P0
− 1 .

Example: If P0 = 950 and X = 1000, then S2 =
√

1000/950− 1 =
√

1.0526− 1 = 2.6%

Similarly, for the 3-year spot rate with price P0 and pay-off X:

P0 =
X

(1 + S3)3
⇒ S3 = (

X

P0
)(1/3) − 1 .

Example: If P0 = 1700 and X = 2000, then S3 = (2000/17000)(1/3) − 1 = (1.1765)(1/3) − 1 = 5.6%

In general, the T -year spot rate for a bond with price P0 and pay-off X is

P0 =
X

(1 + ST )T
⇒ ST = (

X

P0
)(1/T ) − 1 .

The 1-year spot rate is usually different from the 2-year spot rate which again is different from

the 3-year spot rate and so on. In other words, at any given date there is no single interest rate –
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even in the absence of default risk, callability, etc. The phrase term structure of interest rates

refers to the patterns of interest rates for safe zero-coupon bonds at any given data.

The yield curve is a plot of the spot rate against time to maturity – ST on the Y− axis and

T on the X− axis (NOTE that “T” here is NOT the date, but the time to maturity at some given

time). The yield curve can take various shapes, although an upward sloping yield curve is the

most common. You can find pictures of today’s yield curve in publications such as the Wall Street

Journal. The “term structure of interest rates” is really just another word for the “yield curve.”

We will study some theories about the term structure of interest rates.

We will use the notation mt for the pricing kernel, which we will usually interpret as β U ′(Ct)
U ′(Ct−1)

. In

terms of modern theory the price of a one-period discount bond at time t is Et{mt+1} while the price

of a two-period discount bond is Et{mt+1mt+2}. One way to verify this is to consider that the one-

year pay-out to a two-period discount bond is equivalent to selling the discount bond after a year

at price Et+1{mt+2} so the one period return is Et{mt+1Et+1(mt+2)} = EtEt+1{mt+1(mt+2)} =

Et{mt+1mt+2} by the law of iterated expectation. In general the price of a T period discount bond

is

P0 = Et{mt+1...mt+T }

We will not have time to go into modern models of the term structure but, for example, a general

equilibrium model of the term structure involves building a dynamic general equilibrium model and

then generating the pricing kernels from the Euler equation and then pricing the discount bonds.

Of course, unless you are willing to assume something simple like a linear production technology

this quickly become impossible to do analytically. See the graduate textbooks for references if you

want to go into this.

An important concept when you consider the term structure of interest rates is the forward

interest rate. The forward interest rate fst is the interest rate on a loan maturing t periods from

now, but with the loan taken out s periods in the future (s < t of course).

If you want to lend money (buy a bond) with a two year maturity you can do this in 2 ways:

a) Buy a 2-year discount bond with 2-year return (1 + S2)
2, where S2 is the spot-rate.

or

b) Buy a 1-year discount bond with 1-year return 1 +S1, and write a contract that states that you

are going to spend (1 + S1)$ on a bond with return f12, where f12 is the forward interest rate for

a loan signed today, to be delivered at the end of year 1 and repaid at the end of year 2.

The contracts a) and b) should have equal value, since both contracts involved delivering 1$ (or

X$) today with a fixed return 2 years later. Therefore, the yield should be same, which means

that:

(1 + S2)
2 = (1 + S1) ∗ (1 + f12) ,
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In general, any t year loan is equivalent to an s year loan and a t − s period forward loan, taken

out at time s, so we have

(1 + St)
t = (1 + Ss)

s ∗ (1 + fst)
(t−s) ,

which implies that

(1 + fst)
(t−s) =

(1 + St)
t

(1 + Ss)s

or

fst =

(
(1 + St)

t

(1 + Ss)s

)1/(t−s)

− 1

For simplicity we will just denote the one period forward rate at time s by fs, so that fs = fs,s+1

by definition. We will in particular use the one period forward rates. Using the above equation we

find

f1 =
(1 + S2)

2

(1 + S1)
− 1 ,

f2 =
(1 + S3)

3

(1 + S2)2
− 1 ,

and in general

ft =
(1 + St+1)

(t+1)

(1 + St)t
− 1 .

EXAMPLE: Assume S2 = 6% and S1 = 5%, so the yield curve (for maturities 1 and 2 periods) is

upward sloping. What is the forward rate f1? Using the equations above we find:

(1 + .06)2 = (1 + 0.05)1 ∗ (1 + f1)
1 .

or

1 + f1 = 1.062/1.05 = 1.0701 ⇒ f1 = .0701 .

Note that the 2-period spot rate is an “average” of the 1-period spot rate and the forward rate. The

spot rate is close to, but not exactly equal to the simple arithmetic average; here (.0701+.05)/2 =

.06005. Therefore, when the 2-period spot rate is 1 point above the 1-period spot rate, it implies

that the forward rate is approximately 2 percentage points higher than the 1-period spot rate.

EXAMPLE: Assume S4 = 8% and S2 = 7% . We can then find the forward rate f24 as

f24 =

√
1.084

1.072
− 1 = .09 .

If you observe an upward sloping yield curve, this means that the forward rates are all higher than

the spot rates, in the sense that ft > St+1 for all t (remember that ft is the interest rate on a loan
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delivered at t maturing in t+ 1 just as St+1 is the current spot rate on a loan maturing in t+ 1).

This follows since

1 + ft =
(1 + St+1)

(t+1)

(1 + St)t
=

(1 + St+1)
t

(1 + St)t
∗ (1 + St+1) > 1 + St+1 ,

since

St+1 > St ⇒ (1 + St+1) > (1 + St)⇒ (1 + St+1)/(1 + St) > 1⇒
(

1 + St+1

1 + St

)t

> 1 .

The pure expectations hypothesis states that forward interest rates are unbiased predictors

of corresponding future interest rates. For example, if the two-year spot rate is 6% and the one-year

spot rate is 5%, then the forward rate for a 1-year loan taken out next year is (approximately) 7%.

The pure expectations hypothesis states that the expected 1-year spot rate in a year is 7%. Define

the one year spot rate in year t as St,1. The pure expectations hypothesis then can be stated as,

f1 = ES1,1 ,

or more generally as

ft = ESt,1 .

How to test the pure expectations hypothesis? You run the regression

ft = b0 + b1St,1 + ut ,

and perform an F-test for b0 = 0, b1 = 1. The pure expectations hypothesis is an example of a

rational expectations model. It implies that investors on average can forecast the future interest

rate, i.e. ft = St,1 +ut, where ut is a mean zero error term. In the literature you will often see that

authors performing the “reverse regression” St,1 on ft (e.g. Fama), but that does not seem to make

sense. The (future) interest rates are the exogenous variables and investors forecast those subject

to some errors, so if you do the reverse regression you have a “measurement error” in the regressor

and as I have shown earlier, this leads to a downward bias in the estimated coefficient. Similarly,

you can test if the forward rate at period 0 for a (t − s)-period discount bond sold in period s is

the unbiased predictor for the (t− s)-period spot rate in period s, although testing is usually done

on 1-year spot and forward rates.

In practice, you create a data set where the Y-variable is, say, the 1-year forward rates in 1960,

1961,..,1989, i.e. {f1960,1, f1961,1, .., f1989,1}, and your X variable is the 1-year spot rates in 1961,

1962,..,1990, i.e. {S1961,1, S1962,1, .., S1990,1}. In other words, you regress the forward rate on the

spot rate that existed the following year.

The pure expectations hypothesis will be rejected if investors demand a risk premium for buy-

ing long term bonds. For example, if short term investors are risk averse, then they may require a
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positive risk premium (often called a liquidity premium in interest rate models) in order to buy

long-term bonds, which they may have to sell at a random price one year later. In the example

where the one-year spot rate is 5% and the two-year spot rate is 6%, it may actually be the case

that investors expect that on average the one-year spot rate will be 5% the following year. So how

come the forward rate is 7%? The difference, 2%, will be the risk premium. In this case we will

say that the (“impure”) expectations hypothesis hold if ft = k +ESt,1 where k is a constant – the

risk premium. (Usually we simply refer to this model as the expectations hypothesis, and the pure

expectations hypothesis will denote the situation without any risk premium). We can still test

the (impure) expectations hypothesis. In the example, the risk premium for buying 2-year bonds

rather than 1-year bonds is 2%. If in another year the expected future one-year spot rate is 8%

then the one-year forward rate should be 8+2=10%. We test this by running the regression

ft = b0 + b1St,1 + ut ,

(the same regression as before) but now we only test if b1 = 1—the coefficient b0 will measure the

risk premium. The risk premium will not necessarily be positive, in the case where long-period

investors dominate the market, it will be negative, since such investors prefer long bonds and only

invest in short bonds if they receive a suitable risk premium. Typically, though, we expect to find a

positive risk premium. In this case the yield curve will be upward sloping, even if investors expect

future interest rates to equal present interest rates on average.

In reality, our general equilibrium models are about real returns so if you consider nominal

bonds the nominal return is the sum of a real return and inflation. Therefore, a large fraction of

the variation in forward rates reflect expectations about future inflation. If inflation is correlated

with the (real) stochastic discount factors that is one way that you might motivate risk premiums.

Forward rates and marginal utility

If we let the payout to a discount bond be 1, then the price of a k-period discount bond, in

terms of marginal utility is

P k
0 = βk

EtU
′(Ct+k)

U ′(Ct)
,

so the k-period spot-rate is

1 + Sk = (
U ′(Ct)

βkEtU ′(Ct+k)
)(1/k) .

You can see that the rate is high if current consumption is low or if expected future consumption

is high relative to current consumption. Higher (today) uncertainty about future consumption will

tend to drive down interest rates via a precautionary savings motive. (Note: usually, when people

say that something is caused by “a motive” it is bad writing, but here interest rates may be affected

by a desire to save, not by actual saving, which may or may not be possible depending, for example,
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on whether goods are storable in the model.)

For forward rates, focussing on two periods, we have

1 + f1 =
(1 + S2)

2

1 + S1
,

so

1 + f1 =
U(Ct)

β2EtU ′(Ct+2)
/

U(Ct)

βEtU ′(Ct+1)

implying

1 + f1 =
EtU

′(Ct+1)

βEtU ′(Ct+2)
.

Observe: a) If consumption is constant, the forward rate (and all spot rates) equals the discount

rate. b) Higher expected consumption in period t + 1 relative to period t + 2 lowers the forward

rate. c) Higher uncertainty about period t + 2 (t + 1) lowers (increases) the forward rate. This is

as expected in terms of precautionary savings motives and relative scarcity. But the formula also

clearly shows how it is the expectations at t and the relative uncertainty at t, that determines the

forward rate.
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