
ECON 7331 — ECONOMETRICS I

Instructor: Bent E. Sørensen

Office: McElhinney 209A

Tel: 713-743-3841

email: besorensen@uh.edu

Teaching Assistant:

web-page: http://www.uh.edu/ bsorense

Hours: You can usually drop by anytime, sometimes I am out Thursday-Friday and sometimes I

work at home in the morning, so email for an appointment if you want to be sure (emailing about

appointments is the best way, because I use my inbox to keep track of appointments).

Obligatory Notices:

Students with Disabilities: The University of Houston System complies with Section 504 of the Re-

habilitation Act of 1973 and the Americans with Disabilities Act of 1990, pertaining to the provision

of reasonable academic adjustments/auxiliary aids for students with a disability. In accordance with

Section 504 and ADA guidelines, the University of Houston strives to provide reasonable academic

adjustments/auxiliary aids to students who request and require them. Students seeking accommo-

dation in this course should contact the instructor after obtaining the appropriate documentation

through the UH Center for Students with Disabilities.

Counseling and Psychological Services (CAPS) can help students who are having difficulties manag-

ing stress, adjusting to college, or feeling sad and hopeless. You can reach CAPS (www.uh.edu/caps)

by calling 713-743-5454 during and after business hours for routine appointments or if you or

someone you know is in crisis. No appointment is necessary for the Let’s Talk program, a drop-in

consultation service at convenient locations and hours around campus. See:

http://www.uh.edu/caps/outreach/lets_talk.html

Learning Outcomes:

• Students will learn, through lectures, homeworks, and TA-sessions, to master econometric

tools at a level that, in conjunction with other core-classes, enables the students to perform

statistical analysis of economic models.

• Students will develop their technical skills as a background for doing empirical work to the

level expected in graduate economics programs. For this purpose, student will learn to use

the econometric software to estimate models on actual economic data.

• Students will learn the basic ideas of advanced econometrics with a focus on empirically

relevant issues.

Course Description



I list at the bottom of this file what I taught in the Spring of 2017. Each week we will post

programs in Matlab. (Presonally, I am very experienced with Gauss but the TA master’s Matlab

and in any event matrix languages are quite similar so I can usually hep you). We might also use

the Stata econometrics package, which is ubiquitous in applied microeconomics. Programming of

econometric estimators (or rather adapting programs that I post) is an essential part of the class.

The exams will include computer code (maybe with a line missing that you have to add [maybe in

words]) so if you don’t understand the code, you will be lost.

The topics you should know for the exam is what is taught in class. It is usually not helpful to

read further material at this stage, but it is often very helpful to read an alternative presentation

of the same material. Even undergraduate texts, which do not use matrix algebra, may be helpful

in getting a better feeling for various tools.

Readings:

Textbooks:

I plan to use Davidson and MacKinnon: “Econometric Theory and Methods” Oxford University

Press 2004 and Econometric Analysis, William H. Greene, 7th Edition, Prentice Hall, 2012 (this

book is among the 100 all-time most cited books in the world according to Prof. Greene’s web-site).

I may also post some supplementary papers or links and some notes of my own but, again, you are

supposed to know all that has been taught in class and nothing more. I find Davidson and MacK-

innon more to the point, but if you prefer many examples, there are more in Greene (but I think

often that makes it easier to get lost, but we are all different). Personally, I also like Goldberger:

A course in Econometrics, which is really to the point, but it is a bit old now. I will assume you

have access to Davidson-MacKinnon and Green and will often post homeworks from these books.

Notes Notes, homeworks, information, etc. will be posted on the class web-page. The class web-

page will be accessible from my home page.

Material covered last year (this is all standard stuff and this will be covered again—we may cover

a little more or less. Some of the material near the end are given a more introductory treatment

and we will return to it in Econometrics II:

1. Matrix algebra. There are good introductions to this material in Davidson-MacKinnon and

Greene (I like Greene’s appendices better on this). I list some of the more important stuff

below (although it is not exhaustive).

(a) You are expected to know the basic rules about adding and multiplying etc. matrices

before taking this class.

(b) Partitioned matrices are important in econometrics, so you have to able to invert and

multiply those.

(c) A special case of writing a matrix in partitioned form is to write it as a collection of row

vectors or a collection of column vectors. For the important issue of consistency of OLS,

this is crucial.
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(d) You are expected to be able to find the determinant of a 2 × 2 matrix and matrices that

are block-diagonal with 2 × 2 matrices or scalars along the diagonal.

(e) You have to be able to diagonalize a symmetric matrix and you should know the role

of the eigenvalues (More often, though, you will need to make a theoretical argument

relying on the existence of a diagonalization, as opposed to doing it numerically). You

should be able to find eigenvalue for 2 × 2 matrices. This includes the taking of the

square root of a matrix and the square root of the inverse.

(f) You should know about idempotent matrices and their eigenvalues (0 or 1).

2. Statistics

(a) You should know the multivariate normal distribution and how it relates to the χ-square

distribution.

(b) You have to be comfortable taking means and variances of a stochastic vector (a vector

of stochastic variables).

(c) You should (absolutely) know what happens to the mean and variance of a stochastic

vector if it is multiplied by a matrix.

(d) You should be able to explain why e′Me follows a χ-square distribution if M is idempo-

tent and e is standard normal (and explain the degrees of freedom).

(e) You have to know (for testing) that if X is N(0,Σ) then X ′Σ−1X is χ-square. This

follows because Σ−.5X is N(0, I), you should be able to explain this, but the higher

priority is to know the result for X ′Σ−1X which is the multivariate equivalent of dividing

by the standard error (if X is a scalar, then X ′Σ−1X is X2/σ2 = (X/σ)2, i.e., the square

of standard normal.

3. Theoretical derivation of the regression coefficient (vector) and its variance.

4. Be able to show the β̂ (the estimated coefficient in the linear regression model under the

standard assumptions [know what those are]) is unbiased. The unbiased estimator of the

error variance (be able to prove that it is unbiased).

5. Working with numerical examples—the linear model with 2 regressors will often be used in

midterm/exam questions, I may give you some numbers and you should be able to find, say

the coefficient and the standard errors.

6. The Frisch-Waugh (FM) theorem and applications. I may ask you to prove the FW theorem,

so make sure you are comfortable working with the projection matrix PX = X (X ′X)−1X ′

and the residual maker MX = I −PX = I −X (X ′X)−1X ′ Important applications of the FM

theorem are

(a) Regressing on a large number of dummy variables.

(b) Showing the bias in the case of omitted (left-out) variables.

(c) Evaluating the marginal impact of an extra regressor.
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(d) “Added value plots” (to check for outliers).

7. R2, adjusted R2, and partial R2

8. The t- and F-test (know how to formulat the test of hypothesis described in words and know

the equivalence of the “goodness of fit” version and the version where you directly use Rβ̂− q
know how to prove that the F- and t-tests follow the t- and F-distributions). The Chow-test

(and similar simple applications of the F-test that I may think of). Confidence intervals.

9. Functional Form (as I covered it in class: dummy variables, interactions, elasticities, semi-log,

etc.)

10. Data issues: Classical measurement error, multi-collinearity

11. Asymptotics. You will need to use the Law of Large Numbers (LLN) and the Central Limit

Theorem (CLT), but I did not mention the explicit version of the LLN or the CLT, so you

can talk about “the” LLN, and “the” CLT.

(a) Consistency of the OLS estimator (know the assumptions needed on X ′X and be able

to explain that X ′ε is a sum of independent variables so that a LNN holds).

(b) Consistency of the variance estimator.

(c) Convergence of the t− test to a Normal test (whether the data are Normally distributed

or not, as long a CLT holds).

(d) Asymptotic χ2−test of restrictions even if the errors are not Normally distributed (the

case where they are, is of course a special case, so this implies that the standard F-test

converges to the χ2-test (and the F-distribution to the χ2-distribution.

12. GLS. Understand that if Ω is the variance matrix, one can choose a Cholesky factoriza-

tion so that Ω−1/2 is lower triangular and multiplying the n′th row with the true error

vector corresponds to calculating xn − E(xn|xn−1, ...x1) (and scaling with the standard er-

ror). (Confer point 2e.) Therefore the elements of Ω−1/2e are i.i.d., which is equivalent to

var(Ω−1/2 e) = Ω−1/2 var(e) Ω−1/2
′

= Ω−1/2 Ω Ω−1/2
′

= I. This got a little detailed, but you

can take that as a reminder that formulas for the variance of matrix times a stochastic vector

are essential for OLS/GLS theory.

13. Feasible GLS. Main examples: 1) autocorrelation in residuals 2) heteroskedasticity

14. White robust variance estimator. Explain why it works (under suitable assumptions).

15. The IV estimator when there are more instruments than regressors and the special case when

the number of instruments is equal to the number of regressors.

16. Explain why the IV-estimator is consistent (and list the assumptions) but not unbiased.

(Note: there isn’t so much to remember about the assumptions, we basically assume “what

we need” in order to get consistency.)
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17. Maximum Likelihood.

(a) Be able to show that β̂OLS = β̂ML under the standard assumptions plus normality and

explain the relation between are standard OLS estimate of the error variance and the

ML estimate of the error variance.

(b) Also, be able to derive the (Normal) ML estimator in the case of heteroskedasticity. (I

won’t ask for the case of autocorrelated residuals.)

(c) Know the Cramer-Rao lower bound—in particular, that the inverse information matrix

is the asymptotic variance of the estimator.

(d) Be able to prove the information matrix equality (maybe for a particular simple likelihood

function).

(e) Be able to find the ML estimator for simple distributions such as exponential, log-normal,

Bernoulli.
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