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1 Teaching notes on structural VARs.

1.1 Vector MA models:

1.1.1 Probability theory

The simplest (to analyze, estimation is a different matter) time series models are the

moving average (MA) models:

xt = µ + ut + B1ut−1 + ... + Blut−l = µ + B(L)ut,

where the innovation ut is white noise and the lag-polynomial is defined by the equa-

tion. The positive integer l is called the order of the MA-process. MA processes are

quite easy to analyze because they are given as a sum of independent (or uncorre-

lated) variables. However, they may not always be easy to estimate: since it is only

the xts that are observed, the uts are unobserved; i.e., latent variables.

Consider the simple scalar MA(1)-model (I leave out the mean for simplicity)

(∗) xt = ut + but−1 .

If ut is an independent series of N(0, σ2
u) variables, then this model really only says

that xt has mean zero and and autocovariance function: γ(0) = (1 + b2)σ2
u; γ(1) =

γ(−1) = bσ2
u; γ(k) = 0; k ̸= −1, 0, 1. (Notice that I here figured out what the model

says about the distribution of the observed x’s. Therefore this is what the model

“really” says. The autocorrelation function for the MA(1) model is trivial except for

ρ(−1) = ρ(1) = b
1+b2

. By elementary calculus, it is easy to show that the MA(1) has

a maximum of 0.5 for the first order autocorrelation function.
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This same statistical model could also be modeled

(∗∗) xt = vt + bvt+1 .

with vt having the same distribution as ut. Typically one will rule out the model (**)

by assumption, but even the model (*) does not identify the parameter b uniquely. If

you only observe the data then you can calculate the empirical autocovariance func-

tion and if the data are normally distributed then this is basically all the information

that the data is is going to give you (apart from the mean). Assume that the auto-

covariance function for xt is γx(0) = 1 (you can always normalize) and γx(1) = r and

the higher order autocorrelations are all 0. Then we find the equation

c

1 + c2
= r

to determine c. But this is a second order polynomial, which has the solution c = 0

if r = 0 and c = 1
2r

± .5
√
r−2 − 4, otherwise. Notice that this in general gives one

solution in the interval [−1, 1] and one solution outside this interval.

Consider equation (*) again. In lag-operator notation it reads

xt = (1 + bL)ut ,

which can be inverted to

ut = (1 + bL)−1xt = xt − bxt−1 + b2xt−2 + ...

It is quite obvious that this expression is not meaningful if |b| ≥ 1 since the power

term blows up. In the case where |b| < 1 the right hand side converges to a well

defined random variable. sequences:

Definition: The scalar MA(q) model is called invertible if all the roots of the lag-

polynomial b(L) (strictly speaking the corresponding z-transform b(z)) are outside

the unit circle.

In the invertible model the innovation term ut is a function of (the infinite past

of) the observable xts. This is often the most sensible assumption, and in any event

the invertibility assumption is almost always imposed in estimations in order for the
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maximum likelihood estimator to have a unique maximum (i.e. for the model to be

identified). Of course you may have an economic model where the uts have another

interpretation—there is nothing inherently wrong with the non-invertible MA model,

but then you have to be careful with identification if you are estimating the model.

1.1.2 Structural interpretation of Vector MA models

The model structure

xt = µ + ut + B1ut−1 + ... + Blut−l = µ + B(L)ut,

is sometimes used for structural MA-models where each ut vector consists of variables

such as productivity shocks, monetary shocks, fiscal policy shocks, etc. Because the

u-terms have mean zero (also when conditioned on any lagged observations) the term

“shock” is highly appropriate in this model.

The effect on the i’th element, xi
t, of xt of a unit shock to j’th element of ut−k is

bijk where the subscript k implies that we are looking at the i, j’th element of Bk,

where we interpret Bk to be a matrix of 0’s if k > l. Another way of expression this

is
∂xi

t

∂uj
t−k

= bijk .

Notice that the notation can vary a lot for the ijth element of matrix Bk—some

authors prefer bk,ij or other variants. We assume that the ut terms are stationary and

independent and the stationarity assumption implies that we can write the previous

equation as
∂xi

t+k

∂uj
t

= bijk ;

i.e., as an equation that show the predicted effect of current shocks. If you plot bijk

as function of k, you get the so-called impulse response function. (The shock to uj
t is

the “impulse” and the predicted response of xi
t+k is the “response.”) So, if xt is, say,

3 dimensional the structural MA-model implies 3 times n impulse response function

if the Bk matrices have dimension 3 × n. In practice, the matrices are most often

chosen to be quadratic, with the number of endogenous variables equal to the number
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of “impulses.”

Impulse response functions are great tools to analyze the workings of models. It

variable 1, say, is a productivity shock, the impulse response functions for the x-

variables related to this shock very clearly show how the productivity shock reverber-

ates through the economy. In particular for engineers working with linear systems,

this is a useful tool because typically the can actually select an “impulse” (feed some

input into the physical system) and measure the response. In macroeconomics we do

not have that ability although in isolated case you might be able to observe natural

experiments that act as exogenous impulses.

Vector MA-models are very convenient to use for forecasting. Denote the expecta-

tion of xt conditional on xt−h, xt−h−1, .... (The notation E(xt|It−h) where “I” means

“information set” is also used sometimes.) For the Vector MA

xt|t−h = Bhut−h + ...Bkut−k ,

interpreted as 0, if h > k. The “h-period forecast error” xt − xt|t−h is then

xt − xt|t−h = ut +B1ut−1 + ...Bh−1ut−h+1 ,

which, of course, converges to xt is h → ∞.

A related tool is variance decompositions: If the variance-covariance matrix Σu is

diagonal and u has p elements:

Σu =


σ2
1 . . . 0

. . .

0 σ2
p


then

V ar(xi
t − xi

t|t−h) = Σp
l=1 (σ2

l Σ
h−1
k=0 (b

i,l
k )

2 )

The contribution from innovation j to the variance of xi
t − xi

t|t−h is therefore

f i
j =

σ2
j Σ

h−1
k=0 (bi,jk )2

Σp
l=1 σ2

l Σh−1
k=0 (b

i,l
k )

2
.
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(Here, interpret B0 as the identity matrix. In some applications B0 will be not be

the identity matrix.) Notice that Σjf
i
j = 1 and that f i

j is the fraction of the variance

of the h-period ahead forecast error of variable i that is explained (or caused) by

the innovations to shock j. This can be very a very useful way to describe, for

example, which variable is “most important” in generation the business cycle because

the variance of output (or output growth) is a reasonable measure of the “size”

of the business (or any other) cycle, and the proportion of that explained by, say,

productivity shocks, tells us exactly how important productivity shocks are for the

business cycle on average, at a given forecast horizon. It is possible that, say, demand

shocks are more important in the short run and supply shocks in the large run—if

you have the economy described by a linear vector-MA with independent innovations,

you can answer such a question.

1.2 AR models:

The most commonly used type of time series models are the auto regressive (AR)

models. In vector form it is usually denoted a VAR process:

xt = µ + A1xt−1 + ... + Akxt−k + ut ,

where the innovation ut is a martingale difference sequence (or white noise). Here

k is a positive integer called the order of the AR-process. Such a process is usually

referred to as an VAR(k) process.

If a finite order VAR-model is invertible, then if xt = A(L)ut (where I suppress the

constant term for convenience) then xt satisfies the (infinite order) Vector MA-model

xt = A−1(L)ut .

So for invertible VAR-models we can use the methods outlined above to calculation

impulse response functions and variance decompositions.

In practice, if you want to plot impulse response functions (IRFs), it is much easier.

Just as in the scalar case, if

xt − Axt−1 = ut .
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you can invert the lag polynomial (the proof is the same as in the scalar case) and

get

xt = ut + Aut−1 + A2ut−2 + ..... .

assuming the process is stable; i.e., that the right hand convergest. The impuls

response functions are then contained in I, A,A2, .. when you multiply each by, say,

(1, 0, ..., 0)′ for the the first error. For example, the impulse response of variable i

from an impulse to variable j after 3 periods is the (i, j)th element of A3.

But you don’t even need to know this. You can just do a recursion. Say that

xt+k contains a vector of impact of a unit shock to the first error term. You do

x0 = (1, ...0)′. Then x1 = Ax0 and so on xt = Axt−1, which you just do in a loop and

collect the values. You can always do this. The eigenvalue of A doesn’t even have to

be smaller then one for this to work. And you can do it for any VAR. For example, if

xt = A1xt−1 + A2xt−2 + ut ,

you can again do the recureion, for say the first innovation. We have x0 = (1, ...0)′,

x1 = A1x0 and

x2 = A1x1 + A2x0

and so on. This is the same loop you would use to generate the VAR in Monte Carlo,

except you do not add error terms beyond the first one. You can generalize this to a

VARMA, which I may ask you to do for simple example in a home work.

In practice, empirical economists often estimate a VAR-model (MA-models are hard

to estimate). Say, you have a time series for x′
t = yt, pt,mt, where the variables could

be output growth, productivity growth, and money growth, respectively. Then you

can estimate a VAR and invert this to perform variance decompositions and impulse

response functions etc., but notice that this only makes sense if the error terms can

be interpreted as exogenous shocks which is often quite a leap of faith.

This brings me to the last topic of identification. As for the MA-processes, “VAR-

modeling” can is used in a much more specific sense where the innovations (the error

terms) are interpreted at shock to particular “driving” processes (such as productivity
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shocks). I will refer to this as structural VAR modeling which originally suggested by

Christopher Sims as an alternative to the big Keynesian macro econometric models.

The basic philosophy was that the usual macro models only can be identified under

extensive a priori restrictions (in order for individual equations to be identified it is

usually assumed that a given endogenous variable only depends on a limited number

of other endogenous variables). Sims finds many of these a priori restrictions “in-

credible” and suggest that one starts with an unrestricted VAR model instead. Sims’

article is called “Macroeconomics and Reality” and is reprinted various places but

there are by now many surveys and books about structural VAR modelling.

Consider the case of the 1-order VAR for a p-dimensional vector. What you can

estimate from the data is p × p + p(p + 1)/2 parameters (ignoring the vector of

constants for simplicity), namely the matrix A and the different parameters of the

variance matrix. To make this explicit, we can write

xt = Axt−1 + Σuvt , (∗)

where vt is a vector white noise process and Σu is lower triangular (you can always

choose a Cholesky triangular matrix for for square root of the variance matrix).

The “Cowles commission” way of identifying models was to assume (typically) that

the error matrix was diagonal and the economic theorizing would lead to assumptions

on which variables were function of each other, e.g., output depending on money and

productivity but, e.g., these independent of each other. This could be written as

A0xt = Axt−1 + vt .

Here you might let the elements of vt have separate variances but then you would

need to put enough restrictions on A0 to not have more than p × p + p(p + 1)/2

parameters. Another way of putting it is what you cannot estimate a model

A0xt = Axt−1 + Σuvt ,

because this is equivalent to

xt = A−1
0 Axt−1 + A−1

0 Σuvt ,
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and one cannot untangle both A0 and A from an estimated p× p coefficient to xt−1.

Many people in the VAR tradition choose to estimate the model in the form (*),

assuming the estimated error terms corresponds to innovations to exogenous driving

variables. They would not assume that each error term is exogenous but, if

Σu =


σ2
1 0 0

σ21 σ2
2 0

σ31 σ32 σ2
3

 ,

that u1 is an exogenous innovation (shock, impulse, etc.), that u2 − σ21u1 is an ex-

ogenous innovation, and u3 − σ31u1 − σ32u2 is an exogenous innovation. So, e.g., σ21

allows variable number 2, in the example: money, to be a function of variable number

1 output, within the current period t, and variable number 3 (productivity) to be a

function of the other two innovations within the current period. (Note that you need

to modify the impulse response functions and variance decompositions to allow for

non-diagonal covariance matrix, but that should be straight-forward.) So you might

hear an economist say that he or she chooses an “ordering;” here, they might choose

to order the x vector as x′
t = pt,mt, yt such that money within the current period

can react to productivity shocks (but not the other way around) and output to the

other two (but not the other way around)—this is basically the idea in RBC models.

(Of course, in this case here this simply corresponds the choosing an upper triangu-

lar Cholesky matrix, but people prefer to stick with a low triangular and talk about

“orderings” of the variables.

This might all make perfect sense. (Although, I do not believe that monetary policy

would ever be a function of just productivity shocks.) However, there seems to be a

very unfortunate tendency in this literature to not involve much economic argumen-

tation. While people in the Cowles tradition (whatever problems they might have

had otherwise) at least thought hard about what restriction to put on A0, you might

hear “structural VAR” modelers just spend one line, stating something like “I choose

an ordering and the impulse response functions look about the same with other or-

derings...” which basically means (in my view) that they have given up on economics.
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A second critical issue is that if you involve such variables as money then you are

assuming (sadly, this is again often done implicitly, without discussion) that output

is ONLY a function of these variables or at least that no variable that might affect

money is correlated within the current period output (only productivity shocks are

allowed to impact money in the current period). I cannot see that happen. Also, to

use this model (or variations of it) you have to assume that you can measure pro-

ductivity shocks in the sense of increased knowledge/technique/blue prints/etc. and

something like Solow residuals, which are often applied, are not, in my opinion, very

good measures of this. In general, one has to make “brave” assumption to represent

the whole economy as a low order VAR. (Higher order VAR’s might be better, but

you then end up having to estimate a large amount of parameters which likely will

lead to imprecise estimates in the type of samples available to macroeconomists.)

However, in other applications, the methodology might work fine. What you have to

do, is to argue more in terms of economics for whatever restrictions you use whether

you put restriction on A0 on Σ or some other combination. I outline an alternative

methodology below (it is just an outline, see the original paper if you want more

details):

A clever alternative way of identifying models was suggested by Blanchard and Quah.

They argued that supply shocks would affect output forever but demand shocks only

temporary. Writing (say) a two-dimensional process as ∆x1t

∆x2t

 =

 u1t

u2t

 +

 c111 c121

c211 c221

 u1t−1

u2t−1

 +

 c112 c122

c212 c222

 u1t−2

u2t−2

 + ...

then the hypothesis that demand shocks (say variable 2) has no long run effects can be

implemented as the restriction that the sum of the impulses with respect to variable

2 is zero (it is here essential that the variables are written in growth rates). I won’t

go through the model in details but verify for yourself that

∂xi
t+h

∂uj
t

= Σh
k=0b

ij
k ;

9



which simply follows from the definition of of the impulse response function—here

applied to the variable ∆xt—and the fact that

xt+h = ∆xt+h +∆xt+h−1 + ...+∆xt+1 + xt .

The idea is clever and illustrates that sometimes theoretical considerations can result

in non-obvious ways of identifying the model. For empirical research, the infinite sum

of the impulse responses are likely to not be robustly estimated, so this approach has

not had a significant influence on empirical practise although it pops up in research

once in a while.
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