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1 Introduction to Generalized Least Squares

Consider the model

Y = Xβ + ε ,

where the N ×K matrix of regressors X is fixed, independent of the error term, and of full rank,

but the error variance is no longer σ2I but var(ε) = σ2Ω. We will start with the general theory

and work on the common examples next. Also notice that sometimes people will write var(ε) = Ω,

but it is often convenient to have a factor of proportionality “outside.” In most applications, Ω is

not known, but first analyze the case where it is known. (Sometimes one knows from the way the

data is constructed.)

Because Ω is a variance matrix it is symmetric and positive definite, so we can take the square

root of both Ω and Ω−1. Let us assume for simplicity that we take a symmetric square root

(although I will later make another choice—it does not matter for the following). What we want

to use is that Ω−1/2ΩΩ−1/2 = I. Consider then the transformed equation

Ω−1/2Y = Ω−1/2Xβ + Ω−1/2ε .

If we define

Ỹ = Ω−1/2Y ,

and

X̃ = Ω−1/2X ,

and

U = Ω−1/2ε ,

we have

(∗) Ỹ = X̃β + U .

This is a linear equation with var(U) = σ2I, so it satisfies all the OLS assumptions. (Also, if ε is

normally distributed, so is U .) Of course, we know to estimate equation (*) efficiently, namely by

the OLS estimator

β̂ = (X̃ ′X̃)−1X̃ ′Ỹ .

So now let us substitute in the definition of these variables and get

β̂ = [(Ω−1/2X)′Ω−1/2X]−1(Ω−1/2X)′Ω−1/2Y , .
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or, because Ω−1/2Ω−1/2 = Ω−1,

β̂ = [X ′Ω−1X]−1X ′Ω−1Y ,

which is the GLS-estimator. (Sometimes, I will label it β̂gls or something like that if we need to dis-

cuss both OLS and GLS estimators.) Fortunately, it is easy implement because we do not actually

need to take the square roots of the matrices...although, for modern computers and algorithms, it

doesn’t matter much.

The feasible GLS estimator. In many cases, the variances and covariances of the residuals

are not known, so we need to estimate them from the data. Later, we will talk about Maximum

Likelihood estimation, but commonly people use a 2-step estimator.

Step 1 (OLS), estimate β̂ols = (X ′X)−1X ′Y . (Show that OLS is unbiased, later we will show

that it is consistent.). Because OLS is unbiased and consistent, the error terms e = Y −Xβ̂ols are

unbiased estimates of the true errors. We can therefore try and estimate

ˆσ2Ω =
1

N −K
ee′ .

This of course does not work because there are even more elements in Ω than we have data points.

So, we need to make assumptions on Ω in order to limit be able to estimate the variance matrix.

We will discuss the main cases next, but first: assuming we have a valid estimate of Ω̂, we do

Step 2 (Feasible GLS)

β̂fgls = [X ′Ω̂−1X]−1X ′Ω̂−1Y .

This estimator will be consistent if Ω̂ is, although it will not be unbiased, because Ω̂ is a random

variable and it is not easy to find the expectation of the inverse of a random matrix (further, be-

cause it is estimated from the data, Ω̂ is no independent of the error terms).

Main example 1: Heteroskedasticity

Sometimes we suspect, or can reasonably assume, that the error terms are independent but not

identically distributed. In, other words

Eε2i = σ2i ; Eεiεj = 0 if i 6= j .

If you know σi for all i, you can divide by σi and obtain

ỹi = x̃iβ + ui

where ui satisfies the OLS conditions. ui is εi/σi although we of course divide only y and all the

columns of x. (Because ui = ỹi − x̃iβ this is equivalent to having also divided εi by its standard
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deviation.) So dividing by σi is the same as multiplying the vector with Ω−1/2 in this case. As you

will see more clearly for the case of autocorrelation, if you know the linear functions (of y and x)

that creates independent homoskedastic error terms, you have found a version of Ω−1/2.

One practical issue. Consider the typical model

yi = α0 + α1xi + εi .

(There would typically be more than one regressor, but the logic would be the same for the following

point.) If you divide by the standard error σi you get the relation

(∗) yi/σi = α0(1/σi) + α1(xi/σi) + ui .

So you have to run a regression with two-regressors and no constant. This is the answer I expect if

I ask, unless I explicitly suggest something else. In practice, people sometimes do not construct the

regressor where the vector of ones are divided by the standard deviations) and sometimes they do

and also include a constant. This may or may not make sense. If you are running a non-structural

regression, you should think about which specification to use, although (*) is the default. If the

original equation is derived from a model (a structural relation), you have to explicitly use the (*)

regression. In the structural case, you now have the variance of the error term in the transformed

regression having variance unity and you should use that in your tests.

In many situations, we do not know σi but suspect it varies with, say, xi, which you may verify by

a test or a more informally with a plot. If you have decided that σi = σxi you can estimate by GLS

(not just feasible GLS), because you divide the variable by the observable xi and you the variance

of ui equal to the unknown σ2, but that is the standard OLS situation. (This is why text-books

often writes σ2Ω for the variance matrix. If Ω somehow is know (or maybe estimated), we are

back in the OLS case with the transformed variables if σ is unknown. (If it is known, you still do

(X ′X)−1X ′Y to find the coefficients, but you use the known constant when calculating t−stats etc.)

In the case where for example σi = γ1X
1
i + γ2X

2
i , you would usually not know the values of

the γs so you would estimated them and use feasible GLS, dividing the variables by γ̂1X
1
i + γ̂2X

2
i .

Notice that because the γs are estimated, they are not equal to the true values, so we have intro-

duced measurement error. More generally, this is known as the “generated regressor” issue. If your

sample is large, γ̂i ≈ γi and you can ignore the issue. If not, you will have to correct the standard

errors somehow (which we will talk about later, maybe in Econometrics II).

Main example 2: Autocorrelated residuals

A collection of stochastic variables x1, .., xt, .., xT indexed by an integer value t. The interpre-

tation is that the series represent a vector of stochastic variables observed at equal-spaced time

intervals. The series is also some times called a stochastic process.
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Consider a time series of error terms εt where t is time. (In rare occasion, something else, like

physical distance.) We assume the time series is stationary with auto-covariance Eetet−k = γ(k).

The γ(k)’s for k 6= 0 are called autocovariances and if we divide by the variance we obtain the

autocorrelations ρ(k) = γ(k)/γ(0). These are the correlation of xt with it own lagged values.

Note that if ΩT is the matrix of variances and covariance of e1, ..., eT then

ΩT =



γ(0) γ(1) γ(2) . . . γ(T − 1)

γ(1) γ(0) γ(1) . . . γ(T − 2)
...

...
...

...
...

γ(T − 2) . . . . . . . . . γ(1)

γ(T − 1) γ(T − 2) . . . γ(1) γ(0)


.

So if we let ΨT be the matrix of autocorrelations; i.e., ΩT = γ(0)ΨT we will have

ΨT =


1 ρ(1) ρ(2) . . . ρ(T − 1)

ρ(1) 1 ρ(1) . . . ρ(T − 2)
...

...
...

...
...

ρ(T − 1) ρ(T − 2) . . . ρ(1) 1

 .

Time series models are simple models for the (auto-) correlation of the et’s that makes the auto-

covariance matric a function of a small number of parameters that we can estimate. (This is the

statisticians perspective, the models are use extensively as building blocks in modern macroeco-

nomics.)

The most commonly used type of time series models are the auto regressive (AR) models. We

will focus on the AR(1) model, that is the most used by far. We have

et = aet−1 + ut ,

where the innovation ut is white noise with constant variance σ2. Here k is a positive integer called

the order of the AR-process. An AR(1) model is a way of writing the conditional expectation in a

simple manner. We have

ut = et − aet−1 ,

and because the ut’s are i.i.d., subtraction the aet−1 from et is equivalent to multiplying the e vector

by Ω−1/2. But wait: we cannot do that for the first innovation e1. We know it is independent of

u2, u3, etc. so we just need to normalize by it standard deviation. The variance of et (assuming

stationarity) is σ2u/(1− a2), so u1 = e1 ∗ (1− a) has variance σ2u.

So if Ω is the variance matrix for (e1, ..., eT )′, what does Ω−1/2 look like. Well it is the transforma-
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tion, such that u = Ω−1/2e has variance I. So, based on what we have found ,

Ω−1/2 =
1

σu


√

1− a2 0 . . . 0 0

−a 1 0 0
...

...
...

...
...

0 0 . . . −a 1

 .

(Because everything is proportianal to the variance σ2u, I sometimes forget it.) Ω can easily be

calculated as

Ω =
σ2u

1− a2


1 a a2 . . . aT−1

a 1 a a2 aT−2

...
...

...
...

...

aT−1 aT−2 . . . a 1

 .

You should verify that Ω−1/2 Ω Ω−1/2
′

= I for a low dimension—see homework (remember the

transposition, this particular choice of Ω−1/2 is not symmetric.

The transformation is called the Prais-Winsten transformation. In large samples, people often

just drop the first observation (meaning that they use it in the first stage, and then calculate

ut = êt − âêt−1 for t = 2, ...T . This is called the Cochrane-Orcutt transformation.

You can do something similar for an AR(2) model, but this takes some thinking in order to figure

out how to make the first two errors i.i.d. So usually people do Cochrane-Orcutt. Or, if your sample

is small, you can have the computer solve the problem without calculating the exact formula, but

you have to rely on numerical calculations. We will get to that later, maybe not until Econometrics

II.

1.1 MA models:

The simplest time series models are the moving average (MA) models:

et = µ + ut + b1ut−1 + ... + blut−l = µ + b(L)ut,

where the innovation ut is white noise and the lag-polynomial is defined by the equation. The

positive integer l is called the order of the MA-process. MA processes are quite easy to analyze

because they are given as a sum of independent (or uncorrelated) variables. However, they are not

so easy to estimate econometrically: since (in almost all applications of this) is only the et’s that

are observed, the ut’s are unobserved, i.e., latent variables, that one cannot regress on. For the

purpose of our class, where we use the models as modeling tools, this is a parenthetic remark.]
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Consider the simple scalar MA(1)-model (I leave out the mean for simplicity)

(∗) et = ut + but−1 .

If ut is an independent series of N(0, σ2u) variables, then this model really only states that xt has

mean zero and autocovariances: γ(0) = (1 + b2)σ2u; γ(1) = γ(−1) = bσ2u; γ(k) = 0; k 6= −1, 0, 1.

(Notice that I here figured out what the model says about the distribution of the observed x’s. In

some economic models, the ut terms may have an economic interpretation, but in many applications

of time series the the MA- (or AR-) model simply serves as a very convenient way of modeling the

autocovariances of the x− variables.)

The Ω matrix for the MA(1) is

Ω = σ2u


1 + b2 b 0 . . . 0

b 1 + b2 b 0 0
...

...
...

...
...

0 0 . . . b 1 + b2

 .

This looks fairly simple, but I cannot deduce how to find the square root. If the sample is large, I

can approximate by assuming u0 = 0; if I do that then u1 = e1 and u2 = e2 − b u1 and in general

ut = et − b ut−1. The problem, as you see, is that the u’s, while convenient building blocks in

models are unobserved in the econometrics application. So if your sample is small, you may want

to numerically invert Ω (again, we will cover that later).

Consider equation (*) again. In lag-operator notation it reads

et = (1 + bL)ut ,

which can be inverted to

ut = (1 + bL)−1et = et − bet−1 + b2et−2 + ...

It is quite obvious that this expression is not meaningful if |b| ≥ 1 since the power term blows up.

In the case where |b| < 1 the right hand side converges to a well defined random variable. So,

conceptually, we do not observe the u’s because the are residuals in particular infinite AR-process.
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