
ECONOMETRICS II, Fall 2018

Bent E. Sørensen

Midterm Exam II - October 29, 2018

Each sub-question in the following carries equal weight except when otherwise noted.

1. (20%)

a) Explain what a duration model is, including the definition of the survivor function and the

hazard function.

b) Derive the hazard function for the exponential duration model.

c) Write down the likelihood function for a sample of observations from an exponential duration

model with some incomplete spells.

2. (18%) a) Find the estimated β that minimizes (Y − Xβ)′W (Y − Xβ), where Y is a T × 1

vector, X a T × k vector, and W is a full rank symmetric “weighting matrix.”

b) Assuming that Y −Xβ has variance matrix Ω, derive the variance of the estimated β

3. (16%) In the weak-IV survey article by Murray, there is a formula that I asked you memo-

rize. In that formula, there are 4 factors that determines the approximate bias. of 2SLS. What are

these factors (4% for each).

4. (16%) a ) In the following code, what is the object B xxx calculated where there is an A:?

b) In the following code, what is the object B yyy calculated where there is an B:?

c) Explain why you might want to use B yyy or B xxx under certain conditions (which?).

X = [ones(T,1) x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13]; %exogenous

for s = 1:sim

u1 = normrnd(0,sigma1,T,1); % Residuls for equation 1.

u2 = normrnd(0,sigma2,T,1) + 5*u1; % Residuals for equation 2.

y2 = beta3 + beta4*x1 + beta5*x2 + beta6*x3 + beta7*x4 + beta8*x5 + beta9*x6 + beta10*x7 + u2;

y1 = beta0 + beta1*y2 + beta2*x1 + u1;

Y = [y1 y2];

Y1 = Y(:,1); %same as y1
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Y2 = Y(:,2); %endogenous regressors, same as generated y2

X_exo1 = X(:,1:2); %exogenous regressors in the reduced form

X_OLS=[ones(T,1) Y2 x1];

B2_hat = inv(X’*X)*X’*Y2;

Y2_hat = X*B2_hat;

X1_hat = [ones(T,1) Y2_hat x1];

A: B_xxx(s,:) = inv(X1_hat’*X1_hat)*X1_hat’*Y1;

N = length(Y2);

Mexo = eye(N) - X*inv(X’*X)*X’; %projection matrix, X is the instrument for X1

Mexo1 = eye(N) - X_exo1*inv(X_exo1’*X_exo1)*X_exo1’;

W = [Y1 Y2]’*(Mexo)*[Y1 Y2]; %2x2 matrix

W1 = [Y1 Y2]’*(Mexo1)*[Y1 Y2]; %2x2 matrix

lambda = min( eig(inv(W)*W1 )) ;

B: B_yyy(s,:) = inv(X_OLS’*(eye(N)-(lambda*Mexo))*X_OLS)*(X_OLS’*(eye(N)-(lambda*Mexo))*Y1);

5. (30%) Consider a GMM problem where you have a sample of scalar observations yt, (t = 1, ...T ),

which satisfies Eyt = h(xt; θ), where xt is vector of observed variables and θ a K-dimensional

vector of unknown parameters that you want to estimate. You further have access (for each t) to

an L-dimensional vector zt which satisfies L > K and E{zt∗(yt−h(xt; θ))} = 0 for a unique value θ0.

a) Write down the formula for GMM estimator (with identity weighting matrix) of θ in terms

of the variables given.

b) Using the notation of my notes., identify where ft is calculated in the text (e.g., what is the

name used in the code?), where gT is calculated and where the criterion function is calculated.

c) Explain in words how the test for overidentifying restrictions is calculated and what is its dis-

tribution?

GMM CODE.

%{

Xavier Martin G. Bautista

Fall 2018

Macro 3

HW 2

GMM_Main.m
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This replicates Hansen and Singleton (1982). Estimation is done using

GMM. The variance matrix can be estimated using either Newey-West or

Quadratic Spectral kernels.

Note: Convention used is U(C) = (C^(1-gamma))/(1-gamma).

%}

%% 1. Change working directory and load data.

close all

clear

clc

addpath(’D:/Xavier_Laptops/Xavier_Asus/Xavier_Classes/Fall_2018/Macro3/HW2’)

global c lag re rf n T Z

load data

lag = 3; % Number of lags used as instruments. Make sure to change this with Z.

c = data(:,1); % c(t)/c(t-1).

re = data(:,2); % Value-weighted average of stock returns.

rf = data(:,3); % T-bill rate.

T = size(data,1);

Z = [ones(T-lag,1) c(1:T-3) c(2:T-2) c(3:T-1)... % Instruments: 3 lags of consumption, T-bill rate

re(1:T-3) re(2:T-2) re(3:T-1)... % value-weighted average of stock returns.

rf(1:T-3) rf(2:T-2) rf(3:T-1)];

n = size(Z,2); % Number of instruments including constant.

clear data

%% 2. GMM Stage 1: Identity Weighting Matrix.

b0 = [0.5 0.5]; % Initial guess of beta and gamma, respectively.

W = weight(b0,0); % 0 = Identity matrix, 1 = Newey-West, 2 = Quadratic Spectral.

opt = optimset(’FinDiffType’,’central’,’HessUpdate’,’BFGS’); % Use central difference for derivative and BFGS algorithm.
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b1 = fminunc(’gmm_obj’,b0,opt,W);

clear W

****************

function crit = gmm_xxx(guess,W)

global lag T

mom = ((sum(orth(guess),1))./(T-lag))’;

crit = mom’*W*mom;

end

*********************************************

function ZXb = orth(guess)

%{

orth.m

This is the orthogonality condition from Hansen and Singleton (1982)

E(z(t)*((beta*((C(t)/C(t-1))^(-gamma))*r(t)) - 1)) = 0.

%}

global c lag n rf T Z

beta = guess(1);

gamma = guess(2);

C = repmat(c(1+lag:T),1,n);

R = repmat(rf(1+lag:T),1,n);

ZXb = Z.*((beta.*(C.^(-gamma)).*R)-1);

end

***************************************
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