ECONOMETRICS II, Fall, 2017

Bent E. Sørensen

Midterm Exam 2 - November 6, 2017

Each sub-question in the following carries equal weight.

1. (24%) Consider the general selection model

$$
y_{i}=\alpha+\beta x_{i}+u_{i},
$$

and

$$
z_{i}=\omega+\gamma w_{i}+v_{i},
$$

where x_{i} and w_{i} are exogenous regressors, the error terms u_{i} and v_{i} are mean zero and normally distributed and uncorrelated with regressors and satisfies the standard conditions (no autocorrelation/heteroskedasticity). We normalize the variance of v to unity and assume that u and v are correlated with a correlation coefficient of ρ. We observe y only if $Z=1$, where $Z=1$ if $z>0$ and $Z=0$, otherwise. We observe Z, whether it is zero or one.
a) Explain why, if we have 2 generic normally distributed variables X and Y, we can write X as $\gamma Y+u$, where u is independent of Y and γ is a constant. (You have to argue/demonstrate mathematically why u is independent of Y.)
b) If X follows a standard normal distribution, find $E(X \mid X>a)$.
c) Using the results from a) and b), write down the likelihood function (or log-likelihood) for the general selection model.
2. (30\%) Consider the Matlab programs below and fill in the missing part/answering the questions.
3. (16\%) Consider the model:

$$
y_{1}=\alpha_{1} x_{1}+\alpha_{2} x_{2}+u_{1},
$$

Assuming that you have estimated the model by OLS and have the relevant parameter estimates, write down the Wald test for $\alpha_{1}=\sqrt{\alpha_{2}}$.
4. (18%) Consider the simultaneous equation model:

$$
\text { (1) } y_{1}=\alpha_{1} y_{2}+\alpha_{2} x_{1}+u_{1} \text {, }
$$

and

$$
\text { (2) } y_{2}=\alpha_{3} y_{1}+\alpha_{4} x_{1}+\alpha_{5} x_{2}+u_{2} .
$$

a) Explain how you can use Two-Stage Least Squares (2SLS) to estimate equation (1).
b) Explain why the 2SLS estimator can consistently estimate the equation for y_{1}, but not the one for y_{2}.
c) Explain in words what the Three-Stage Least Squares estimator does.
4. (12%) a) Explain what a duration model is, including a definition of the survivor function and the hazard function.
b) Derive the hazard function for the exponential duration model.

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Econometrics 2
% Midterm 2
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Question 1
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear
clc
global w z N
% Set the true parameters and placeholders for results.
N = 500;
beta0 = 0.5;
beta1 = 3;
sigmau = 2;
gamma0 = 1;
gamma1 = 4;
rho = 0.8;
\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%\%
%
% Generate the data. The latent variable model for a is:
%
% a0(j) = beta0 + beta1*x(j) + u(j)
%
% where a(j) = a0(j) if z0(j) > 0 and unobserved otherwise.
%
% The latent variable model for z is:
%
% z0(j) = gamma0 + gamma1*w (j) + v(j)
%
% where z(j) = 1 if z0(j) > 0 and 0 otherwise.
```

\% Number of observ
\% Intercept for y .
\% Coefficient on X
\% Standard deviati
\% Intercept for z0
\% Coefficient on W
\% Correlation betw

\%

\%
e = mvnrnd([0; 0],[sigmau^2 rho*sigmau; rho*sigmau 1],N);
$\mathrm{u}=\mathrm{e}(:, 1)$;
v = e(: 2);
$\mathrm{x}=((1: \mathrm{N}) \cdot / \mathrm{N}) . *$ normrnd $(0,1, \mathrm{~N}, 1)$;
$\mathrm{w}=\left((1: \mathrm{N})^{\prime} / \mathrm{N}\right) . *$ normrnd $(0,1, \mathrm{~N}, 1)$;
z0 = gamma0*ones(size(w,1),1) + gamma1*w + v;
z = double((z0 > 0));
$\mathrm{a} 0=$ beta0*ones(size $(\mathrm{x}, 1), 1)+$ beta1*x +u ;
$x(z 0<=0)=[] ;$
$\mathrm{a}=\mathrm{a} 0$;
$a(z 0<=0)=[] ;$
\% Step 1: Probit.
b0 $=\left[\begin{array}{ll}1 & 1\end{array}\right]$;
options = optimset('Display','off');
[b_mle, ~, ~, ~, ~, ~] = fminunc('logl_prob', bO, options);
\% Correlated error
\% Error terms for \% Error terms for
\% Latent variable \% Observed z.
\% Latent variable
\% Gets rid of the
\% Observed a.
\% Initial values.
\% Turn off display \% Minimization.
\% Step 2: OLS.
\% \%
\% FILL IN MISSING CODE
\%
\%
(Write as much as you can, you will get partial points for explaining what needs to be done ev if you forget some of the formulas)
\%

```
%
% Question 2
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
global y x1 x2 T
% Set the true parameters and placeholders for results.
T = 1000; % Sample size.
beta0 = 0.5; % Intercept.
beta1 = 3;
beta2 = 0;
sigma = 1;
% Generate the data.
x1 = ((1:1:T)'/T).*normrnd(0,1,T,1);
x2 = ones(T,1) + 2.*x1 + 5.*normrnd(0,1,T,1);
x = [ones(T,1) x1 x2];
u = sigma.*randn(T,1);
y = beta0 + beta1.*x1 + beta2.*x2 + u;
% Maximum likelihood estimation.
options = optimset('Display','off');
b0 = [11 1 1 1 1];
[b1_mle,~,~,~,~,hess] = fminunc('logl_unres', b0, options); % Unrestricted ML 
b0_res = [11 1 1];
[b2_mle] = fminunc('logl_res', b0_res, options)
    % Coefficient on
    % Coefficient on X
    % Standard deviati
    % Restricted ML es
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
```

```
% Lagrange Multiplier Test. Null is:
%
% H0: beta2 = 0
%
% How would logliklihood functino codes and the following code below change
% if instead the null is:
%
% HO: beta2 = 0 and beta1 = 0
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

```
grad_LM = zeros(4,1);
    % Gradient of unre
grad_LM(1,1) = sum((y - ones(size(y,1),1).*b2_mle(1) - ...
    b2_mle(2)*x1)/b2_mle(3)^2);
grad_LM(2,1) = sum(x1.*(y - ones(size(y,1),1).*b2_mle(1) - ...
    b2_mle(2)*x1)./b2_mle(3)^2);
grad_LM(3,1) = sum(x2.*(y - ones(size(y,1),1).*b2_mle(1) - ...
                                    b2_mle(2)*x1)/b2_mle(3)^2);
grad_LM(4,1) = sum(ones(size(y,1),1).*(-1/b2_mle(3)) + ...
        (y - ones(size(y,1),1).*b2_mle(1) - ...
                                    b2_mle(2)*x1).^2/b2_mle(3)^3);
```

```
vmat_IM = [b2_mle(3)*inv(x'*x) zeros(3,1);
    zeros(1,3) b2_mle(3)/(2*T)];
```

LM = grad_LM'*vmat_IM*grad_LM;
pval_LM = chi2cdf(LM,1,'upper');
if pval_LM >= 0.05
reject_LM = 0;
else
reject_LM = 1;
end

