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Introduction to Clustered Standard Errors

Assume that you want to estimate the model

yi = Xiβ + ui ,

where var(ui) = σ2
i , yi is a scalar, and Xi is 1× k vector containing k regressors.

In vector form, the model is

y = Xβ + u ,

where X is an n× k matrix and y and u are n−vectors.

The i index can stand for, say, individuals, time, or individuals and time (i.e. panel) and

the problem is one of heteroskedasticity. If you have a model for the heteroskedasticity,

you can deal with as taught in elementary econometrics and do GLS, or you can control

for it when calculating standard errors. In the clustering literature, the latter is always
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done. Recall that if the variance of the error vectore is Ω the variance of the estimator

β̂ is

(X ′X)−1X ′ΩX(X ′X)−1 .

where Ω is V ar(u) = Euu′. Clustering is the case where Ω is not diagonal, but observa-

tions in certain subgroups are correlated. That can be captured using a random effect

(or fixed effect) model, but in the modern cluster literature, it is typically assumed that

the error terms correlated with the regressors so the challenge is to estimate

E{X ′uu′X} .

We need to rely on LLNs, so notice that we can write

X =


x11 . . . xk1
...

...
...

x1N . . . xkN

 ,

or in partitioned form

X =



X ′1
...
X ′i
...
X ′N

 ,

where Xi is the vector of the k regressors for observation i.
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Now. we have

X ′uu′X = (X1, ..., XN)


u1
...
uN

 (u1, ..., uN)



X ′1
...
X ′i
...
X ′N


or

X ′uu′X = (X1, ..., XN)


u21 . . . u1uN
... . . .

...
uNu1 . . . u2N




X ′1
...
X ′i
...
X ′N


In the case of standard heteroskedasticity, the off-diagonal elements of the uu′ matrix

has mean zero and if we set those to zero and multiply, we have

X ′uu′X = ΣiXiX
′
iu

2
i ,

and White (and some before him) realized that (unless the Xs go crazy, which we assume

they do not) this term satisfies a LLN and converges to, say, Σ, after dividing by N .

So, using regression residuals for the true errors, we can estimate the variance of the

estimator β̂ is

(X ′X)−1Σ̂ (X ′X)−1 ,

where Σ̂ is the finite sample estimate. (Note that the asymptotic variance of
√
Nβ̂ is the

limit of ( 1
N
X ′X)−1 1

N
X ′uu′X( 1

N
X ′X)−1, where each term now is normalized to satisfy
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a LLN). The beauty of this is that we can have heteroskedasticity of unknown form

and variances and covariance can be correlated with the Xs as long as everything stays

bounded enough that the LLN applies.

The same math, almost, can be done if there is correlation between the residuals

within groups g = 1..., G of size m, say. Assume with not loss of generality that the data

are ordered so we first have group one, then group two etc. And collect the error terms

in vectors U1, ..., UG where

U1 = (u1, ..., um)′ .

U2 = (um+1, ..., u2m)′ ,

etc. We can then use partitioned matrix algebra and write

uu′ =


U1U

′
1 . . . U1U

′
G

... . . .
...

UGU
′
1 . . . UGU

′
G

 .

and

Euu′ =


U1U

′
1 . . . 0

... . . .
...

0 . . . UGU
′
G

 .

4



Partion X the same way, so that

X =


X1′

...

XG′

 ,

where Xg ′s now is the k regressors for clusters g = 1, ..., G in a k × G matrix. Then,

disregarding the mean zero terms, we have

X ′uu′X = ΣgX
g UgU

′
gX

g ′ ,

which, for the number of clusters, G, going to infinity, satisfies a LLN when divided by

G. The cluster-robust standard error is then

(X ′X)−1(ΣgX
g UgU

′
gX

g ′) (X ′X)−1 .

In practise, you would of course use residuals for the error terms.
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