

under aerobic conditions

Three possible catabolic fates of the pyruvate formed in glycolysis. Pyruvate also serves as a precursor in many anabolic reactions, not shown here.

FERMENTATION (S)

1. Fermentation to alcohol (alcoholic fermentation), in yeast and some microorganisms

Overall Reaction:

Glucose + 2 Pi + 2 ADP + 2 H $^+$ \longrightarrow 2 Ethanol + 2 CO₂ + 2 ATP + 2 H₂O

2. Fermentation to lactate, in muscle cells and some microorganisms

Overall Reaction:

Glucose + 2 Pi + 2 ADP \longrightarrow 2 Lactate + 2 ATP + 2 H_2O

Fermentation to alcohol:

Fermentation to lactate:

Glucose

Figure 19-4, page 490; Figure 19-5, page 491

Stryer: *Biochemistry*, Fourth Edition © 1995 by W. H. Freeman and Company

PHOSPHOFRUCTOKINASE

Phosphofructokinase is the most important control element in the mammalian glycolytic pathway

Solved X- Ray Structure

- Homothetramer (340 kDa)
- Has two conformation states, R and T, that are in equilibrium

INHIBITORS

- 1. ATP
- 2. H+
- 3. Citrate (intermediate of TCA Cycle)

Structure of phospholructo Linase

Allosteric regulation of phosphofructokinase Figure 16-17

[Fructose 6-phosphate] -->

Stryer, Tymoczko, & Berg, BIOCHEMISTRY, Fifth Edition. Copyright © 2002 by W. H. Freeman and Company.

ACTIVATORS

1. AMP, ADP

2. Fructose 2, 6- bisphosphate

(example of Feelforward stimulation)

- ATP is both a substrate and an allosteric inhibitor
- Each enzyme subunit has two binding sites for ATP, a substrate site, and an inhibitor site
- The substrate site binds ATP equally well in either conformation(R or T); the inhibitor site binds ATP almost exclusively in the T state
- The other substrates preferentially bind to the R state

Activation of phosphofructokinase by fructose 2,6-Bisphosphate Figure 16-18 The inhibitory effect of ATP is reversed

Stryer, Tymoczko, & Berg, BIOCHEMISTRY, Fifth Edition.

Copyright © 2002 by W. H. Freeman and Company.

Conformation of hexokinase: Induced fit

Figure 19-14, page 499

Schematic diagram of the NAD'-binding region in dehydrogenases

- · alcohol dehydrogenase
- · lactate dehydrogenase
- · malate dehydrogenase
- · glyceraldehyde 3-phosphate dehydrogenare

glycevaldehyde 3-phosphate + Pi + NAD+ =>
1,3-Bisphosphoglycevate + NADH + H+

Catalytic mechanism of glyceraldehyde 3-phosphate dehydrogenase

GLUCOSE TRANSPORTERS

- · Integral membrane proteins of mammalian cells
- Named GLUT 1 to 5
- Single polypeptide chain ~ 500 a. a.
- 12 transmembrane ∝ –helices

I. GLUT 1 & GLUT 3

- · Present in nearly all mammalian cells
- · Responsible for basal glucose uptake
- Continually transport glucose at an essential constant rate

II. GLUT 5

- · Present in the small intestine
- Works in tandem with the Na⁺- glucose symporter in the absorption of glucose from the gut
- · Releases glucose into bloodstream

III. GLUT 2

• Present in liver and pancreatic β cells

IV. GLUT 4

Mediates entry of glucose into muscle and fat cells

BREWING BEER

Beer is made by alcohol fermentation of the carbohydrates in cereal grains (seeds) by yeast glycolytic enzymes

PROCEDURE:

- 1. Malting: The seeds are allowed to germinate until they form the hydrolytic enzymes required to break down their polysaccharides. The product is called "malt"
- 2. Preparing the wort: The malt is mixed with water and then mashed or crushed. Digestion of the polysaccharides. Separation of the cell matter from the liquid wort.
- 3. Adding the yeast cells: First aerobic glycolysis and citric acid cycle. When oxygen is consumed, anaerobic fermentation
- 4. Adjustment of the amount of foam of head of the beer.

e 15-12

aval of a terminal glucose residue from the educing end of a glycogen chain by glycogen chorylase. This process is repetitive; the enzyme ves successive glucose residues until it reaches burth glucose unit from a branch point (see .5–13). Amylopectin is degraded in a similar on by starch phosphorylase.

