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Abstract

Designing a dependable software is a hard, if not an impossible task. Debugging is
necessary for a dependable software product, which occupies a large amount of resources
(time and money) in software development. Concurrency defects even have made debugging
even harder. Thus, these days, software products are usually shipped with known and
unknown bugs.

Run-time verification is a technique that monitors the behavior of a program as it runs
and verify the conformance of this behavior with the specification of the program. The moni-
toring take place at software level by instrumenting the program with verification statements,
or at a lower level, it can be done by the underlying hardware which is faster but more com-
plex. In last two decades much effort has been spent to design hardware architecture serving
to this end. In this paper, we give a brief overview of the recent developments in this field,
which seemingly is striving to “Hardware Support for Software Debugging”.

Based on an architecture contribution to debugging, we classify it to “Architectures for
postmortem analysis” and “Software Monitors”.

1 Introduction

Debugging plays an important role in software development. As computers go everywhere
and find new applications; the demand for reliable software increases. It is approximated that
software bugs damage the US economy about 59.5 billion dollars annually [13].

Development of quality software demands techniques which manifest software flaws (i.e.
error) efficiently and accurately. There are much effort in test and analysis of software in each
phase of development. The success of test techniques is highly dependent on the quality of
test suits that are provided to the program [25, 2]. The program analysis techniques also have
limited power first because of inherent undecidable problems [16], and secondly because of as
correctness of a program is tied to the used libraries and transformations done by compiler to
produce the executable code [1].

Therefore, a complement approach is run-time monitoring which can be done at either
software level or at hardware level[8]. In this approach, real data and control state of a program
is accessed, thus, it can capture abnormality in the program execution more precisely. The
run-time monitoring of programs can contribute to the software debugging in two ways: (1)
collecting data from execution such that when system fails, it gives enough information for
reconstruction of failure scenario and analysis of it which this analysis is called “postmortem



analysis” in jargon of debugging. (2) the behavior of program and state of variables and controls
are monitored such that any violation of specification to be detected. Automatic instrumentation
tools such as PIN [19] or other tools [9] make deployment of such techniques easier at software
level. However, the caveat with the software approach is high performance degradation of
programs, which slows down the test process substantially- by 10 to 100 times [5].

An alternative approach, suggests to exploit the performance of the hardware in run-time
monitoring of programs [31, 5]. Since hardware can access to detail information about the pro-
gram execution efficiently,this approach tends to design computing architectures which facilitate
the effective extraction of program state in monitoring.

In this paper, we review recent developments in this field. To this end, in Section 2, we
describe three major replay processor architectures, and subsequently in Section 3, we give
some example of architectures which serve as monitors. Finally, in Section 4, we discuss the
application of hardware in debugging and conclude the paper.

2 Replay Architectures

Debugging of a program requires understanding of cause of the failure, thus, reproduction of
failure scenario has been using by developers for years. In sequential programs the reproduction
of failures can be done by check-pointing the statements and using debuggers, but in concurrent
program, it is harder, because non-deterministic nature of execution causes bugs to manifest
in special threads interleaving[24]. So, recording the execution steps of concurrent programs
gained more attention. Software only techniques which serve to this end, suffer from performance
overhead [28, 10, 6, 23].

In this section, we introduce replay architectures which continuously record the execution
steps on a log file in anticipation of a “trigger”. Trigger usually represents an error or crash
[30]. Such log file can be used for reproduction of error or other postmortem analysis[20].

Concurrency and non-repeatable input introduce non-determinism to the program. Thus,
a replay architecture must guarantee that replay of logs leads to correct manifestation of the
error. In other word, the replay must be faithful[30]. For this reason, the architecture has to
capture synchronization races (the order of execution of instructions of threads) and memory
race (the order of access to shared data). Observe that, the number events in production runs is
usually huge. Thus, the major challenge in these architectures is, to minimize the set of stored
events while guaranteeing the faithful replay of log.

We look at three replay architectures. Section 2.1 looks at Flight Data Recorder architecture
[30], which it is one of the first replay architectures with sub-optimal logging in multiproces-
sors. Section 2.2 we study Rerun[14] architecture as an improvement of Flight Data Recorder
architecture.

2.1 Flight Data Recorder

Xu et al. [30] propose “Flight Data Recorder(FDR)” a hardware-based replay architecture, in
cache-coherent multiprocessors. Since, the number of events, in a parallel execution of program
is high, recording all production runs (i.e. execution steps) is practically impossible. Thereby,
FDR virtually partitions the execution time of program into intervals and continuously records
the last interval. FDR a log for reconstruct the initial replay state, which is the system state
at the beginning of the interval. This log includes the architectural state of all processors, the
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Figure 1: Flight Data Recorder in [30].

physical memory image and I/O state.

Furthermore, since FDR cannot predict the occurrence of trigger, it utilizes checkpointing
[27] to periodically store a complete system state. By saving the old value of memory location
before updates, it incrementally creates logical checkpoints. Moreover, it only records the first
update for each memory location in logical checkpoints.

Starting from initial replay state, FDR must ensure that each replayed instruction produces
the same value as in the program execution. In case of single thread execution, it is achieved
by storing the input data. In a multithreading setting, it must record the interleaving too.

FDR assumes sequentially consistent (SC) memory model for the base hardware. Then, for
tracking programs interleaving, it needs to record a total instruction ordering of the execution.
The ordering is captured as pairwise ordering of all instructions. To minimize the number of
stored ordering, FDR utilizes the following facts:

e There is no need to log the order among the instruction within the same thread, because
the ordering among them is fixed.

e If two instructions from two threads work on distinct data, the order of their instructions
in the replay, would not change the result of replay.

Therefore, FDR only records the execution order of instructions which are working on the same
set of shared data; which in turn, it reduces the number of recorded interleaving.

Figure 1 depicts the FDR architecture. In this architecture values in all buffers and check-
point buffers are compressed by a hardware compressor based on Lempel-Ziv algorithm [35].
To record I/0O events, it treats device interface as a pseudo-processor. Thus, it adds “DMA
Race Log Buffer” module to log the interleaving of DMAs as well. This architecture records
the system events by “Interrupt Log Module”.



The length of interval, in this architecture is one second. To build log of this interval, at
any time it stores four checkpoints of the system. At each 1/3 of a second, it creates a new
checkpoint and discard the oldest one. This approach helps FDR to keep execution logs of the
last one second, which is an acceptable time. For example in 1GHz processors , FDR is able
to replay the last one billion cycles of processors. In this architecture when a trigger occurs,
processor flushes out all log buffers and copies contents of physical memory to the disc. This
configuration for four-processor setting has been evaluated and induced only 7% overhead to
performance of the system under commercial workload and stores 4 bytes per 1K instructions
[30].

2.2 Rerun

Hower and Hill [14] propose Rerun as a replay architecture to enhance FDR (described in
Section 2.1) by proposing new memory race recorder which reduces the log size substantially. A
key driving idea is to record how long threads executes without interacting with other threads,
instead of recording interleaving of threads. To apply this idea, Rerun introduces the “Episodic
Memory Race Recording” technique.

In Episodic memory race recording, computations of threads are divided into episodes; which
an episode is a sequence of instruction that can run independent of other threads. The question
becomes when an episode ends? To answer to this question, recall that Rerun inherits all
components of FDR, except its memory recorder. Thus, it relies on SC memory model.

Rerun defines conflicting episodes as those pairs of episodes when there is a data depen-
dence across them. SC implies that conflicting episodes cannot be executing simultaneously.
Therefore, an episode should end when another thread issues a conflicting memory reference to
its data. In this case, the episode of current thread and episode of the other thread starts.

Rerun assigns a read set and a write set to each episode, which represent the blocks fo
memory that they have accessed. These sets are used to identify conflicting episodes to establish
an order among episodes for replay. It utilizes Lamport [15] clock scheme to assign a unique
timestamp to episodes. It uses the following policy to assign timestampp, an scalar clock, to
the current episode in Threadg:

e When E starts, the timestamp of E is one value greater than the timestamp of last episode
in Threadg.

e When E adds a block to its read set, which it was most recently in the write set of a
completed episode D, timestamprp = Maxz{Timestampe, Timesatampp + 1}

e When E adds a block to its write set, which most recently was in the write set of a

completed episode D and in read sets of completed episodes D, .., D} ; timestampg =

Max{Timestamp., Timesatampp + 1, Timesatamppi +1,..., Timesatampp, + 1}

The Rerun implementation depicted in Figure 2, adds the following hardware state to store
the local state of a thread:

1. Read and Write vectors to track read/write sets of the current episode,
2. Timestamp register, to hold the timestamp of the current episode, and

3. Memory reference counters for number of the current episode’s references.



Moreover, this implementation adds a memory timestamp register for each L2 cache bank. This
register holds the maximum timestamp of all blocks that map to this bank. The amount of
hardware added to the base system is substantially lower than FDR, such that it requires 166
bytes per core while FDR requires at least 4KBytes. Experiments show that, despite of less
hardware modifications, Rerun works as well as FDR [14].
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Figure 2: Rerun Architecture (a) Base system configuration (b) L2 cache bank (c¢) Core internals. Dark
components represent new hardware elements to the base system. (Courtesy of [14])
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3 Hardware Monitors

Efficient run-time monitoring of programs can be exploited to improves debugging or reliability
of programs. Many security flaws and safety violations can be reported and in some cases pre-
vented by keeping track of the execution of the program [26]. For example, malicious input data
from a network can change the execution of program to security attacks like code injection[11],
which monitoring of flow of data in program execution can prevent it [12].

There are many software based runtime monitoring [22, 21, 7]. They have two major deficien-
cies,(1) severe performance degradation and (2) since, they mostly rely on compiler techniques,
in some situations, such as aliasing, they are not accurate [32].

In this section, we present architectures which serve two general run-time monitoring of a
program, in Section 3.1 and 3.2.

3.1 iWatcher

Zhou et al. [32, 31, 34] devise “iWatcher”, a hardware architecture which supports memory
monitoring. iWatcher allows programmers to associate a monitoring function to a portion of
memory. Any access to the “watched” memory, triggers the corresponding monitoring function.
Since iWatcher can monitor all accesses to the watched memory, it can be used to detect and
prevent memory related faults such as buffer overflow, memory leaks and stack smashing. Its
flexibility in number of memories to monitor and functions to define, distinguishes it from
hardware-based watchpoints [29] that is implemented in the Intel x86- which supports only four
watchpoints.

This architecture provides two system calls iWatcherOn() and iWatcher0ff as the interface
for programmer. Programmers can insert these functions into the source code wherever moni-
toring is needed. iWatcherOn() method specifies the memory addresses to be monitored, types
of accesses (read/write or both), monitoring function to trigger in the occurrence of such event.



After execution of iWatcherOn(), iWatcher will invoke the specified monitoring function upon
a triggering access to the watched memory. Programmer can use iWatcher0ff () to disable
monitoring of specific memory addresses.

Figure 3 depicts the iWatcher architecture. The shaded components represent extra hard-
ware to implement iWatcher. For fast detection of monitoring of memory access, it adds two
bits per word in the L1 and L2 caches called “WatchFlag”. One bit of WatchFlag represents
read access and the other one is for write access. Range Watch Table (RWT) is used to store
WatchFlags for large regions of memory, while the Victim WatchFlag Table (VWT) stores the
flag of displaced lines in the L2 cache. Main check function is a register for entry which main-
tains the starting of Main_check function() library call. Main_check functoin() stores the
monitoring functions regarding to accesses to specific memories in a Check table.
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Figure 3: iWatcher architecture.(Courtesy of [32])

When a memory access triggers the iWatcher, first processor saves its program counter
(PC) and the architectural state, then, processor changes the PC to Main_check_function.
Main_check_function() looks for the proper monitoring function and invokes it. On completion
of iWatcher, the execution is transferred back to the program and the processor resumes the
program execution by restoring the most recent state which was saved.

A comparison between performance of iWatcher and a comparable software-only Valgrind
[21] has shown 17 to 167 times improvement on different programs [33].

3.2 Log Based Architecture

When a program and its monitor run on the same shared resources like register files and pro-
cessors, they compete for resources which slows down the program execution. To address this
issue, Chen et al. [4] proposes Log-Based Architectures (LBA), based on decoupling program
and its monitor.

In LBA program and monitor runs on the separate CPU cores(Figure 4). When an instruc-
tion in the program is retired, an event record is generated which comprises of program counter,
type, input and output operand identifiers and load/store memory addresses. This record is
compressed by VPC3 statistical compression hardware[3]. Afterwards, the compressed records
is sent to the lifeguard core. Evaluations has shown the size of compressed record on average is



less than one byte [4].
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Figure 4: Log Based Architecture.

The monitoring function, which is called “lifeguard” in this architecture, is organized as a
set of event handlers in Event Type Configuration Table (ETCT). It allows user to define a new
event handlers and to insert it into ETCT. When an event record arrives, it is decompressed by
the designated hardware. Lifeguard looks up the ETCT for the proper handler and fetches it.
Each handler terminates by issuing an nlba (Next LBA record) instruction, which notifies the
hardware to start processing the next event record from the input buffer at the decompressor
hardware.

The communication between the program’s core and the lifeguard’s core is asynchronous
and based on the log buffer. However, a full log buffer stalls the program. Thus, LBA uses a
large buffer(64KB to 1MB) to ameliorate this issue.

Moreover,LBA relies on the operating system to postpone the program’s system calls un-
til the lifeguard completes processing of the its log buffer. Using this, LBA tries to prevent
propagation of possible error to the system.

The experiments show 4 to 19 times speedup comparing to a comparable software-only
technique Valgrind [21].

4 Discussion

In this paper we briefly mentioned some proposals to use hardware in software debugging. In
this section we discuss the limitations and opportunities of this approach.

The motivation behind utilizing hardware in monitoring is performance and accuracy com-
paring to software-only techniques. Designs of these architectures require performance and
accuracy. Two properties that are often hard to attain simultaneously. Moreover, to reduce the
cost of implementation such architectures, it is necessary to minimized the modification to the
current processor architectures.

In addition, understanding of nature of bugs and their manifestation in the execution can
help for efficient implementation of run-time monitors. Chen et al.’s [5] suggests that designer’s
overspecification of bugs affects performance of run-time monitoring. For example, they discov-
ered, that for identifying code injection faults in run-time, monitoring of only unary instruction
can capture majority of such errors.

The use of hardware for postmortem analysis and run-time monitoring is increasing. How-
ever, we should not overlook other opportunities that hardware architectures may improve the
software quality. PathExpander [18] is a good example, such that,it addresses test coverage



problem [17], by speculative execution of non-taken branches. In our view, we need to rethink
the software development process with new player, computer architecture.
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