
Prediction of Relatedness in Stack Overflow:
Deep Learning vs. SVM

A Reproducibility Study

Bowen Xu
∗

Singapore Management University

bowenxu.2017@smu.edu.sg

Amirreza Shirani
∗

University of Houston

ashirani@uh.edu

David Lo

Singapore Management University

davidlo@smu.edu.sg

Mohammad Amin Alipour

University of Houston

alipour@cs.uh.edu

ABSTRACT

Background Xu et al. used a deep neural network (DNN) tech-

nique to classify the degree of relatedness between two knowledge

units (question-answer threads) on Stack Overflow. More recently,

extending Xu et al.’s work, Fu and Menzies proposed a simpler clas-

sification technique based on a fine-tuned support vector machine

(SVM) that achieves similar performance but in a much shorter

time. Thus, they suggested that researchers need to compare their

sophisticated methods against simpler alternatives.

Aim The aim of this work is to replicate the previous studies

and further investigate the validity of Fu and Menzies’ claim by

evaluating the DNN- and SVM-based approaches on a larger dataset.

We also compare the effectiveness of these two approaches against

SimBow, a lightweight SVM-based method that was previously

used for general community question-answering.

Method We (1) collect a large dataset containing knowledge units

from Stack Overflow, (2) show the value of the new dataset address-

ing shortcomings of the original one, (3) re-evaluate both the DNN-

and SVM-based approaches on the new dataset, and (4) compare

the performance of the two approaches against that of SimBow.

Results Wefind that: (1) there are several limitations in the original

dataset used in the previous studies, (2) effectiveness of both Xu et

al.’s and Fu and Menzies’ approaches (as measured using F1-score)

drop sharply on the new dataset, (3) similar to the previous finding,

performance of SVM-based approaches (Fu and Menzies’ approach

and SimBow) are slightly better than the DNN-based approach, (4)

contrary to the previous findings, Fu and Menzies’ approach runs

much slower than DNN-based approach on the larger dataset – its

runtime grows sharply with increase in dataset size, and (5) SimBow

outperforms both Xu et al. and Fu andMenzies’ approaches in terms

of runtime.

∗
Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ESEM ’18, October 11–12, 2018, Oulu, Finland
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5823-1/18/10. . . $15.00

https://doi.org/10.1145/3239235.3240503

Conclusion We conclude that, for this task, simpler approaches

based on SVM performs adequately well. We also illustrate the

challenges brought by the increased size of the dataset and show

the benefit of a lightweight SVM-based approach for this task.

CCS CONCEPTS

•Theory of computation→ Support vectormachines; •Com-

puting methodologies → Neural networks; • Software and

its engineering→ Software libraries and repositories;

KEYWORDS

Relatedness Prediction, Deep Learning, Support Vector Machine

ACM Reference format:

Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour.

2018. Prediction of Relatedness in Stack Overflow: Deep Learning vs. SVM .

In Proceedings of ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), Oulu, Finland, October 11–12, 2018
(ESEM ’18), 10 pages.
https://doi.org/10.1145/3239235.3240503

1 INTRODUCTION

Using machine learning techniques in software engineering re-

search has been commonplace, such as [9, 22, 30] to name few. The

applicability of machine learning techniques depends on the hy-

pothesis class that can be represented by them. That is, the functions

that they can represent. For examples, linear regression models are

very effective for linearly separable problems (i.e., classes can be

separated with a single decision surface), but they cannot be used

for problems with higher complexity.

Neural networks constitute a powerful class of machine learning

models with large hypothesis class. For example, a multilayer feed-

forward network is called a universal approximator [7]; that is,

it can essentially represent any function. Deep neural networks

methods are representation learning methods that allow a method

to use raw data and extract the representation of the data [13]; it

can substantially reduce the burden of feature engineering. Deep

learning has produced promising results in complex tasks such as

object detection [23], natural language understanding [19], text

classification [11] and many more.

Nowadays, there has been a surge in adoption of deep learning
1

in software engineering research. It has been applied successfully

1
We use two terms deep learning, and deep neural networks interchangeably.

1

https://doi.org/10.1145/3239235.3240503
https://doi.org/10.1145/3239235.3240503

ESEM ’18, October 11–12, 2018, Oulu, Finland Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour

to problems such as [6, 30, 33]. A common issue raised in the appli-

cation of deep learning techniques is that sometimes deep neural

networks are applied to problems that do not require the rich,

complex hypothesis class that deep learning offers, and simpler

techniques can be used as effectively instead. The simplicity of

models is desirable for two main reasons. First, simpler models are

easier to interpret and comprehend and comprehension of relations

between variables can afford useful insights about the underlying

phenomena. Second, simpler models can be trained more efficiently,

and potentially with smaller dataset.

Recently, Xu et al. [30] and Fu and Menziess [4] investigated the

problem of predicting relatedness between Stack Overflow knowl-

edge units. Xu et al. use deep neural networks (DNN) for the task,

while Fu and Menzies [4] use a support vector machine (SVM)

tuned by using differential evolution (DE). Fu and Menzies reported

benefits of using the simpler model; that is, similar accuracy can be

achieved with lower runtime cost. In this paper, we replicate the

evaluation of the two techniques on the same software engineering

task, but using a much larger dataset. Our goal in this study is

to evaluate the consistency of claims made by these prior studies.

Replication studies are often instrumental to assess the validity of

previous findings, uncover new insights, as well as investigate the

impact of some threats to validity affecting prior work [2].

In our experiments, we find that the dataset used to evaluate

both approaches has a number of shortcomings. Once we addressed

those shortcomings, by creating a larger dataset that is subjected

to a more thorough data cleaning step, we observed that the per-

formance of the both techniques (evaluated using F1-score) drops

sharply by more than 20%.We found that still Fu andMenzies’ SVM-

based model performs slightly better than Xu et al.’s DNN-based

model – consistent with the findings in [4]. However, in terms of

time efficiency, the runtime cost required to tune SVM using DE

grows by a large amount when the dataset is increased in size. As

a result, the performance benefit of using Fu and Menzies’ SVM-

based model is no longer observed when it is evaluated on the new

dataset. Addressing this drawback, we adapt a lightweight award-

winning SVM-based model named SimBow [3] for the task and

evaluate its effectiveness. We demonstrate that SimBow requires

much less runtime cost as compared to Xu et al. and Fu and Menzies

approaches, while achieving similar accuracy.

The contributions of this work are as follows:

• We replicate two previously presented studies on predict-

ing relatedness of Stack Overflow knowledge units using a

much larger and cleaner dataset. Our study confirms some

findings reported in prior works, highlights and explains

some discrepancies, and points out to challenges unsolved

by prior works.

• To address one of the challenges (i.e., high runtime cost of

Xu et al.’s and Fu and Menzies’ approaches), we investigate

the value of an alternative lightweight method (SimBow).

We demonstrate that it can outperform prior baselines in

terms of runtime cost by a large margin, while achieving a

similar accuracy.

• We release source code for SimBow and the new dataset,

along with the experiment results at https://github.com/

XBWer/ESEM2018.

Organization The rest of this paper is organized as follows. Sec-

tion 2 defines the problem of predicting relatedness of Stack Over-

flow knowledge units and the evaluation metrics. Sections 3 pro-

vides replication of the two approaches proposed by Xu et al. and

Fu and Menzies along with one new adopted approach SimBow.

Section 4 explains the creation process of the dataset. Section 5

presents the research questions and corresponding results. Section

6 discusses the possible shortcomings with the previous dataset

used in Xu et al. and Fu and Menzies’s studies. Section 8 describes

related works. Section 9 concludes the paper.

2 TASK AND EVALUATION METRICS

2.1 Predicting Relatedness in Stack Overflow

Software developers must solve numerous programming, algorith-

mic, and system problems to write, maintain, or deploy programs.

Knowledge about these problems is dispersed in many books and

user manuals that are hard to locate and use. Therefore, develop-

ers often use technical forums to use crowd’s knowledge and seek

solutions to those problems.

Among technical forums, Stack Overflow is the most popular

resource for programming related discussions. Stack Overflow repu-

tation system has attracted many developers to participate actively

and contribute to this forum. Most Stack Overflow questions are

answered within 11 minutes after posting them [15]. Stack Over-

flow allows users to search, post, or answer questions. It also allows

users to vote up and down questions and answers. Nowadays, Stack

Overflow is an indispensable tool for programmers; about 50 mil-

lion developers visit it monthly, and over 85% users visit Stack

Overflow more than four times a week.
2

Following Xu et al. [30], we refer to a Stack Overflow thread

consisting of a question along with all its answers as a knowledge
unit (KU). Despite Stack Overflow’s vibrant community, knowledge

in Stack Overflow is disconnected and developers must search for

related knowledge units that provide additional insights about their
problem and possible solutions that can be very time-consuming.

Figure 1: Linked Knowledge Units by URL Sharing

2
Stack Overflow 2018 Developer Survey, https://insights.stackoverflow.com/survey/

2018/

2

https://github.com/XBWer/ESEM2018
https://github.com/XBWer/ESEM2018
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/

Prediction of Relatedness in Stack Overflow:
Deep Learning vs. SVM ESEM ’18, October 11–12, 2018, Oulu, Finland

Table 1: Classes of Knowledge Unit Pairs

Link Type Definition

Duplicate Two knowledge units discuss the same question in

different ways, and can be answered by the same

answer.

Direct One knowledge unit can help solve the problem

in the other knowledge unit, for example, by ex-

plaining certain concepts, providing examples, or

covering a sub-step for solving a complex problem.

Indirect One knowledge unit provides related information,

but it does not directly answer the question in the

other knowledge unit.

Isolated The two knowledge units are not semantically re-

lated.

Identifying relatedness of knowledge units would accelerate de-

veloper’s ability in navigating the rich and yet diverse information

in Stack Overflow. Thus, Stack Overflow encourages developers to

link related knowledge units by URL sharing [20]. Figure 1 shows a

real example of how two knowledge units are linked by developers.

A network of linkable knowledge units constitutes a knowledge unit
network over time through URL sharing [32]. As shown in Table 1,

Xu et al. divided all the relationship between two knowledge units

into four categories based on relatedness, i.e., duplicate, direct, in-

direct and isolated [30]. To identify related contents, a model can

be trained to predict the relatedness between KU pairs. There are

multiple challenges for predicting relatedness of KUs in Stack Over-

flow. First, there is informal, redundant, irrelevant information in

KUs. Secondly, in addition to natural text, KUs contain source code,

which is of a different nature. Thirdly, different developers exhibit

different discursive habits in posting questions and answers; e.g.,

some questions or answers are very terse, while some are very long

and tend to include much information.

Table 2 shows real examples of pairs of knowledge units with dif-

ferent degrees of relatedness. The original knowledge unit is talking

about String comparison in Java. Another knowledge unit on Stack

Overflow is labeled as duplicate with the original knowledge unit

because they actually talk about the same problem but in different

ways. Thus, the answers of original knowledge unit and duplicate

knowledge unit can be shared. Another knowledge unit talks about

a similar but not identical problem, i.e., how does == works in case
of String concatenation in Java. Thus, based on the definition, there

is a direct relationship between the two knowledge units. Consider

yet another knowledge unit that discusses memory change during
string concatenation in Java. We regard it as an indirect knowledge

unit to the original knowledge unit, because it is directly linked to

one of the direct knowledge units of the original knowledge unit.

The order of semantic relatedness between two knowledge units is:

Duplicate > Direct > Indirect > Isolated. For the details of dataset
building, please refer to Section 4.

2.2 Evaluation Metrics

To evaluate the performance of the proposed approaches in the

prediction of relatedness between knowledge units, we use the

same metrics as used in previous works [4, 30], i.e., precision, recall

and f1-score. In this task, the classifier has to classify each pair of

knowledge units into four classes. Table 3 depicts the confusion

metrics when we have four classes.

Base on the confusion matrix, the definitions of precision, recall

and F1-score are as below:

Precision for a class i is the proportion of knowledge-unit pairs

correctly classified as the class i among all pairs classified as the

class i .

Precisionj =
Cii∑

1≤j≤K Cji

Recall for a class i is the percentage of knowledge-unit pairs cor-
rectly classified as the class i compared with the number of ground

truth label Li in the dataset.

Recalli =
Cii∑

1≤j≤K Ci j

F1-score for a class i is a harmonic mean of precision and recall for

that class.

F1i =
2 × Precisioni × Recalli
Precisioni + Recalli

3 REPLICATION

This section overviews the techniques for predicting relatedness.

The techniques are as follows, we refer to Xu et al., Fu and Menzies,

and SimBow techniques as CNN Model, Tuning SVM, and Soft

SVM, respectively.

• CNN Model, Xu et al. [30]: Appeared in ASE 2016.

• Tuning SVM, Fu and Menzies [4]: Appeared in FSE 2017.

• Soft SVM, SimBow [3]: Appeared in SemEval-2017 Task

3: Community Question Answering.

3.1 Xu et al.’s Study (CNN Model)

At ASE 2016, Xu et al. [30] presented the task of predicting related-

ness of knowledge units, and proposed a deep learning approach

for it. In this section, we briefly review their approach. For more

technical details, please refer to the original paper [30].

Deep learning is a class of machine learning techniques that can

be used for classification or regression tasks. Deep learning has

produced impressive results in domains such as image processing

and natural language processing where feature engineering has

been traditionally challenging.

Deep learning trains a weighted neural network for the learning

task. A neural network comprises a group of interconnected neu-
rons organized in multiple layers. A neuron is the smallest unit of

computation in the networks. Each neuron performs a dot product

on the input vector X and weights vectorW , then, it adds the bias

b; finally, it applies the activation function f (or non-linearity) to

the result.

Overview of Approach To predict the relatedness between knowl-

edge units, Xu et al. built a convolutional neural network (CNN)

model [14] using a word embedding trained on Stack Overflow data

to capture low- and high-level representations of KU pairs.

To extract low level (i.e., word-level) semantic features, each

word is represented by a 200-dimension vector by utilizing aword2vec

model [16]. Theword2vecmodel is created using a corpus of 100,000

Java knowledge units (i.e., posts tagged with “java”). And contin-

uous skip-gram model [16] is used to learn domain-specific word

3

ESEM ’18, October 11–12, 2018, Oulu, Finland Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour

Table 2: Example of Duplicate, Direct, Indirect Knowledge Units Pairs

[Original KU] (https://stackoverflow.com/questions/513832)

Title How do I compare strings in Java?

Description

I’ve been using the == operator in my program to compare all my strings so far.

However, I ran into a bug, changed one of them into .equals() instead, and it fixed the bug.

Is == bad? When should it and should it not be used? What’s the difference?

[Duplicate KU] (https://stackoverflow.com/questions/3281448)

Title Strings in Java : equals vs ==

Description

String s1 = "andrei"; String s2 = "andrei"; String s3 = s2.toString();

System.out.println((s1==s2) + "␣" + (s2==s3));

Giving the following code why is the second comparison s2 == s3 true ? What is actually s2.toString() returning ?

Where is actually located (s2.toString()) ?

[Direct KU] (https://stackoverflow.com/questions/34509566)

Title “==” in case of String concatenation in Java

Description

String a = "devender"; String b = "devender"; String c = "dev"; String d = "dev" + "ender";

String e = c + "ender";

System.out.println(a == b); //case 1: o/p true

System.out.println(a == d); //case 2: o/p true

System.out.println(a == e); //case 3: o/p false

a & b both are pointing to the same String Literal in string constant pool. So true in case 1

String d = "dev" + "ender";

should be internally using something like -

String d = new StringBuilder().append("dev").append("ender").toString();

How a & d are pointing to the same reference & not a & e ?

[Indirect KU] (https://stackoverflow.com/questions/11989261)

Title Does concatenating strings in Java always lead to new strings being created in memory?

Description

I have a long string that doesn’t fit the width of the screen. For eg.

String longString = "This␣string␣is␣very␣long...";

To make it easier to read, I thought of writing it this way -

String longString = "This␣string␣is␣very␣long..." + "This␣string␣is␣very␣long..." + ...;

However, I realized that the second way uses string concatenation and will create 5 new strings in memory and this

might lead to a performance hit. Is this the case? Or would the compiler be smart enough to figure out that all I need

is really a single string? How could I avoid doing this?

Table 3: Confusion Matrix

Predicted as

C1 C2 C3 C4

Actual Label

C1 C11 C12 C13 C14

C2 C21 C22 C23 C24

C3 C31 C32 C33 C34

C4 C41 C42 C43 C44

embeddings from the corpora. The embeddings for the words were

initialized using the trained word embeddings. Zero vector is used

for padding the shorter sequences and representing the missing

words in the pre-trained vectors.

Then, a convolutional neural network model is built on top of

that to extract high level (i.e., document-level) semantic features.

The convolutional neural network is a class of deep learning tech-

niques, feed-forward artificial neural networks. A convolutional

neural network consists of an input and an output layer, as well

as hidden layers. The hidden layer’s parameters consist of a set of

learnable filters. As shown as Figure 2, filters of five different win-

dow sizes (the number of adjacent words considered jointly, in their

case, i.e., 1, 3, 5, 7, 9) are utilized to capture the most informative

n-grams in the text. For each window size, there are 128 filters to

learn complementary features from the same word windows. Relu
is used as activation function (i.e., Relu(x) = max(0,x)) and Max

Pooling is used in the sampling process.

The input of the model is two high-dimensional text vectors of

two given knowledge units and the output are two low-dimensional

semantic feature vectors. The relatedness between two knowledge

units are computed as the following equation:

Relatedness(KUx ,KUy) =
f vx · f vy

∥ f vx ∥

f vy

4

https://stackoverflow.com/questions/513832
https://stackoverflow.com/questions/3281448
https://stackoverflow.com/questions/34509566
https://stackoverflow.com/questions/11989261

Prediction of Relatedness in Stack Overflow:
Deep Learning vs. SVM ESEM ’18, October 11–12, 2018, Oulu, Finland

Input Layer Hidden Layer Output Layer
Conv + Relu + Max pooling

1-gram filters

Conv + Relu + Max pooling

9-gram filters

3-gram filters
5-gram filters
7-gram filters

Linear
transformation

Semantic vectorSentence vector

Figure 2: CNN Architecture in CNN Model

where f vx and f vy denote two low-dimensional (in this case,

50-dimension) feature vectors generated by CNN. Then, the loss is

computed as the absolute difference between cosine similarity of

two feature vectors and ground truth relatedness.

Replication To replicate the experiments described in [30], we

use the source code released by Xu et al.
3
and apply it to our

dataset. Although the neural networks are usually trained using

GPUs, the implementation of this approach is CPU-based. In our

replication, we ran the experiment on a MacBook Pro with Intel(R)

Core(TM) i7-4870HQ 2.5 GHz, 16GB RAM, running macOS High

Sierra(64-bit).

3.2 Fu and Menzies’ Study (Tuning SVM)

In FSE 2017, Fu and Menzies [4] proposed a different technique

for predicting relatedness of pairs of knowledge units. This section

provides a brief overview of their technique.

Fu and Menzies argue that CNN models described in the Sec-

tion 3.1 is computationally too expensive for the task of predicting

relatedness of knowledge units. They propose tuned support vector

machines for this problem.

SVMs Support Vector Machines (SVMs) are supervised learning

models used mainly for classification. In their basic form, SVMs

learn linear threshold function. These learners seek to minimize

misclassification errors by selecting a boundary or hyper-plane that

leaves the maximum margin between two classes [10].

Parameter Tuning Fu and Menzies [4] use word2vec represen-

tation [16] as features and SVM as a classifier in this study. The

word2vec model is trained on 100,000 Java knowledge units in Stack

Overflow using the skip-gram model. They use differential evolu-

tion (DE) [21] to tune the conventional support vector machine

model. Authors use the same training and testing knowledge unit

pairs as in Xu et al.’s study [30], where 6,400 pairs of knowledge

units for training and 1,600 pairs for testing. During the parameter

tuning procedure, 10-fold cross-validation is performed to reduce

the potential variance caused by how the original training data

is divided. Therefore, all the performance scores used for tuning

3
https://github.com/XBWer/ase16-CNN

are averaged values over 10 runs. They use F1-score to score the

candidate parameters because it controls the trade-offs between

precision and recall.

Replication We carefully followed the steps outlined in [4] to

replicate the study. We used the source code released for Tuning

SVM
4
and apply it to our dataset. That is, we use the sameword2vec

as theirs and we also apply DE to find the optimal parameters for

the SVM training. The objective of the parameter optimization is

to maximize the F1-score of the underlying SVM. Then the SVM

model with optimal parameters is evaluated on testing data.

Unfortunately, Fu and Menzies’s implementation spent more

than one week without returning any result. We found that the

approach executes through 10 pre-trained word2vec models with

different seeds and perform 10 fold-cross validation for each model.

Thus, to further improve the time efficiency, we modify the code to

execute the code on ten word2vec instances in parallel. We deploy

it on an HPC cluster with Intel Xeon E5-2680 v2 2.8 GHz CPUs, and

64 GB RAM nodes.

3.3 SimBow: A Lightweight Alternative (Soft

SVM)

In this section, we describe the paper "SimBow at SemEval-2017

Task 3: Soft-Cosine Semantic Similarity between Questions for

Community Question Answering" (SimBow). Author’s proposed

approach is a supervised combination of different unsupervised

textual similarities such as soft-cosine similarity. Unlike two previ-

ous system, this system is a re-ranking problem and is evaluated on

natural text from Qatar living forum. The task aims at re-ranking

10 related questions proposed by a search engine, regarding the

relevance to the original question.

Soft-Cosine Similarity Measure Classic cosine similarity mea-

sure between 2 vectors is directly related to the number of words

which are in common in both which texts are represented by a

vector of TF-IDF coefficients (Equation 1).

cosine(a,b) =

∑N
n=1 aibi√∑N

i=1 a
2

i

√∑N
i=1 b

2

i

(1)

The problem with traditional cosine similarity is that when there

are no words in common between texts a and b, cosine similarity

is null. However, two texts can semantically convey the similar

meaning by using different words. This problem occurs repeatedly

in our case where two semantically similar questions are depicted in

different ways. Therefore, cosine similarity alone cannot be enough

here.

Hence authors propose to take into account word-level relations

by introducing the soft-cosine similarity formula with computing a

relation matrix M, as suggested in equation 2.

so f t − cosine(a,b) =

∑∑
i ,
N
j aimi jbj√∑∑

i ,
N
j aimi jaj

√∑∑
i ,
N
j bimi jbj

(2)

whereM is a matrix whose elementmi ,j expresses some relation

between word i and word j. When computing this metric, the sim-

ilarity between two texts is not null when the texts share related

4
https://github.com/WeiFoo/EasyOverHard

5

https://github.com/XBWer/ase16-CNN
https://github.com/WeiFoo/EasyOverHard

ESEM ’18, October 11–12, 2018, Oulu, Finland Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour

words, even if they have no words in common. Different ways are

suggested for computing the matrixM . To obtain relevant semantic

relations between words, authors compute soft-cosine similarity

features based on two pre-trained word embeddings (Qatar living

word2vec and Wikipedia word2vec) and one based on the Edit dis-

tance. Matrix M can be computed in different ways. Authors use the

following equation(3) for computing soft-cosine similarity based

on word embedding.

mi j =max(0, cosine(vi ,vj))
2

(3)

wherevi stands for theword2vec representation ofwordwi . Ground-

ing to 0 is to avoid having negative cosines between words and is

obtained empirically.

Likewise, for Edit distance-based measure, the matrix M is cal-

culated as follows:

mi j = α ∗ (1 −
Levenshtein(wi ,w j)

max(| |wi | |, | |w j | |)
)β (4)

Where | |w | | is the number of characters of theword,α is a weighting

factor relatively to diagonal elements, and β is a factor that enables

to emphasize the score dynamics. Authors set α = 1.8 and β = 5

empirically.

SimBow for Relatedness Prediction We followed several simple,

preprocessing steps: We replaced URLs and numbers with URL and

CC respectively. Stop words and punctuations are removed and all

letters are converted to lowercase. There are many technical terms

in Stack Overflow so we need to have more data specific prepro-

cessing steps. Therefore besides mentioned preprocessing steps,

we split words by underline and capital letters. We also removed

characters like <, >, (and).

We re-implement the SimBow’s features from scratch on Stack

Overflow data. In total four different features are extracted from

the text. Cosine similarity, soft-cosine similarity based on Stack

Overflow data (soft-SO), soft-cosine similarity based on pre-trained

Google word2vec (soft-Google) [16] and soft-cosine similarity based

on Levenshtein distance (soft-Edit).

For soft-cosine similarity features based on word embedding and

based on Edit distance, we follow the same formulations as in Sim-

Bow. To compute soft-cosine similarity based on Stack Overflow

data (soft-SO), we train a word2vec model on 223,466 knowledge

units tagged with java from Stack Overflow posts table (include

titles, bodies and answers). The skip-gram model [17] is used with

vectors dimension 200 and only the words with a minimum fre-

quency of 20 are taken into account.

We apply the same algorithm suggested forweighting theword2vec

vectors with TF-IDF, where IDF is derived from the train and devel-

opment sets.

We train a SVMmodel to classify question pairs into four classes.

We tune the regularization parameter (C) using grid search tech-

nique over the best feature combination that includes all of the four

extracted features. We use the best parameter value (C=100) with

the linear kernel for training the model with all the training and

development data and used that model for predicting the labels in

the test data. This system is performed on Intel(R) Xeon(R) CPU

E5-2667 v4 @ 3.20GHz. We report the runtime of this system on

the Stack Overflow dataset to be around 1.5h for feature extraction

and 1.5h for tuning the parameters.

4 DATA

Both Xu et. al. [30], and Fu andMenzies [4] perform experiments on

a small dataset that we call OriginalDataset. OriginalDataset

contains only 8,000 pairs of Java knowledge units (i.e., tagged with

“Java”): 2,000 pairs of knowledge units for each type of relationships,

among them, 1,600 pairs are used for training and 400 pairs are

used for testing.

4.1 Creating LargeDataset

To further evaluate the effectiveness of the techniques proposed,

we created a larger dataset that we refer to as LargeDataset. Note

that the relatedness (i.e., label) between knowledge units cannot

be directly extracted from Stack Overflow, further processing is

required. Figure 3 depicts the process of creating the new dataset

by an example; it includes three main steps:

(1) extracting duplicate and direct link pairs from Stack Over-

flow data dump,

(2) building a knowledge units network (KUN) using the link

information,

(3) extracting relations between all pairs of knowledge units in

the knowledge network.

First, the experiment data is from Stack Overflow data dump
5
.

Specifically, a table named PostLinks includes duplicate and di-
rect knowledge units pairs. Similar to OriginalDataset, only Java

knowledge units are considered in LargeDataset. Then, duplicate
and direct links information is used to create a knowledge unit net-

work (KUN). The KUN is used to extract the relationships between

any two knowledge units.Direct and duplicate relations are readily

extracted from the information in the PostLinks. The relation be-

tween a pair of knowledge unit is indirect if two knowledge units

are connected in the KUN with a certain range of distance (in this

case, length of shortest path ∈ [2,5]), but the relationship between

them belongs neither to duplicate nor direct. Two knowledge units

are isolated if they are not connected in the KUN (i.e., they belong

to different clusters).

PostLinks Table
KU KU Relationship

KU1 KU2 Duplicate
KU1 KU4 Direct
KU3 KU4 Duplicate
KU5 KU7 Direct
KU5 KU6 Duplicate

1 2

4
3 6

7 5
Duplicate

Direct

1 2

3

KU1
KU2
KU3
KU4
KU5

KU1
-

T1
T3
T2
T4

KU2
T1
-

T3
T3
T4

KU3
T3
T3
-

T1
T4

KU4
T2
T3
T1
-

T4

KU5
T4
T4
T4
T4
-

KU6
T4
T4
T4
T4
T1

KU7
T4
T4
T4
T4
T2

KU6
KU7

T4
T4

T4
T4

T4
T4

T4
T4

T1
T2

-
T3

T3
-

T1: Duplicate, T2: Direct, T3: Indirect, T4: Isolated

Figure 3: Dataset Building Process

5
Stack Overflow data dump, https://archive.org/download/stackexchange

6

https://archive.org/download/stackexchange

Prediction of Relatedness in Stack Overflow:
Deep Learning vs. SVM ESEM ’18, October 11–12, 2018, Oulu, Finland

Table 4: Precision, Recall and F1-Score of CNN Model and Tuning SVM on Original Dataset

Duplicate

Direct

Link

Indirect

Link

Isolated Overall

Precision

Xu et al. CNN Model 0.89 0.75 0.84 0.89 0.84

Fu et al. Tuning SVM 0.88 0.85 0.94 0.90 0.89

Recall

Xu et al. CNN Model 0.89 0.90 0.77 0.79 0.842

Fu et al. Tuning SVM 0.86 0.82 0.99 0.90 0.89

F1-Score

Xu et al. CNN Model 0.89 0.82 0.80 0.84 0.84

Fu et al. Tuning SVM 0.87 0.84 0.96 0.90 0.892/28/2018 lda.html#topic=0&lambda=1&term=

file:///Users/xubowen/Desktop/Study/Research/201712-MSR18/MSR18_Project/src/ColingDatasetAnalysis/lda.html#topic=0&lambda=1&term= 2/2

PC1

PC2

Marginal topic distribution

2%

5%

10%

1

2

3
4

5 6

7

8 9

10
11

12

13

14

15

16
17

18

19

20

21

22
23

24

25

26

27

28

29

30

31

32
33

34 35
36

3738

39
40

41 42

43
444546

47
48 49

50

Intertopic Distance Map (via multidimensional scaling)

Overall term frequency

Estimated term frequency within the selected topic

1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)
2. relevance(term w | topic t) = λ * p(w | t) + (1 - λ) * p(w | t)/p(w); see Sievert & Shirley (2014)

date
enum

Spring
key

spring
display

video
array
Map

jar
constructor

HTML
word

variable
x

List
exception

loop
xml

image
Swing
dates
days

calculate
query
Date

package
text

B
year

0 500 1,000 1,500 2,000

Top-30 Most Salient Terms1

Figure 4: Topic Distribution of OriginalDataset
5/23/2018 medium_data_lda.html#topic=0&lambda=1&term=

file:///Users/xubowen/Desktop/Study/Research/201712-MSR18/MSR18_Project/src/ColingDatasetAnalysis/topic/medium_data/medium_data_lda.html#topic=0&lambda=1&term= 2/2

PC1

PC2

Marginal topic distribution

2%

5%

10%

1
2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

38

3940

41

42

43

44
45

46

47

48

49

50

Intertopic Distance Map (via multidimensional scaling)

Overall term frequency

Estimated term frequency within the selected topic

1. saliency(term w) = frequency(w) * [sum_t p(t | w) * log(p(t | w)/p(t))] for topics t; see Chuang et. al (2012)
2. relevance(term w | topic t) = λ * p(w | t) + (1 - λ) * p(w | t)/p(w); see Sievert & Shirley (2014)

array
thread

jar
date
table

Spring
client

connection
regex
JSON

character
database

page
row

image
android
maven

Hibernate
column
Eclipse
Android

key
characters

request
format
plugin
spring

eclipse
XML
split

0 2,000 4,000 6,000 8,000 10,000

Top-30 Most Salient Terms1

Figure 5: Topic Distribution of LargeDataset

4.2 Characteristics of the new dataset

We followed the steps outlined in Section 4.1 and created a new,

larger dataset (LargeDataset). More specifically, the new dataset

contains 40,000 pairs of knowledge units which is five times the

small dataset. We applied Latent Dirichlet Allocation (LDA) to inves-

tigate the top-50 topic distribution of two datasets. Figures 4 and 5

shows the graphical distribution of topics in OriginalDataset

and LargeDataset, respectively. As is shown, compared to Large-

Dataset, OriginalDataset covers fewer topics.

5 RESEARCH QUESTIONS AND RESULTS

5.1 Research Questions

We seek to address the following four research questions.

• RQ1: How well do CNN Model and Tuning SVM per-

form in predicting relatedness of knowledge units on Large-

Dataset?

• RQ2:What is the run-time cost of CNN Model and Tuning

SVM in LargeDataset?

• RQ3: Is there any major difference between performance of

CNN Model and Tuning SVM on LargeDataset and their

performance in OriginalDataset?

• RQ4: Does Soft SVM perform better than CNN Model and

Tuning SVM on LargeDataset?

RQ1 and RQ2 seek to investigate the performance of the predic-

tion techniques on LargeDataset. Specifically, we are interested

to learn if the high performance of those models stems from the

characteristics of the dataset that they used. In other words, we

investigate a more realistic situation by having more instances and

covering more topics available in LargeDataset.

RQ3 is concerned with the consistency of performance of tech-

niques between the OriginalDataset and LargeDataset. RQ4

addresses the question whether an SVMmodel with fewer but more

effective textual features can perform better than other techniques.

5.2 Results

In this section, we present the results of our experiments. Consistent

with the previous studies, we use precision, recall and F1-score as

performance metrics of models.

RQ1: Performance of CNNModel and Tuning SVM on Large-

Dataset

Table 5 depicts performance of models trained by CNN Model

and Tuning SVM and Soft SVM for individual classes along with

the overall scores. Overall, Tuning SVM outperforms CNN Model

system almost by 10 percentage points. In all classes except Direct,

Tuning SVM outperforms CNN Model, as it seems that the Direct

class is the hardest class for Tuning SVM to predict. On the other

hand, Duplicate class is the hardest class for CNNModel to classify.

Across all metrics, Isolated class obtains the highest score, which

means identification of this class is easier than the rest.

RQ2: Computation cost of CNN Model and Tuning SVM on

LargeDataset

Table 6 compares the time efficiency of building classification

models in each approach. Note that, in interpreting the results,

the heterogeneous computing infrastructure may have a moderate

7

ESEM ’18, October 11–12, 2018, Oulu, Finland Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour

Table 5: Performance of Three Systems on Large Dataset

Duplicate

Direct

Link

Indirect

Link

Isolated Overall

Precision

CNN Model 0.55 0.33 0.32 0.79 0.50

Tuning SVM 0.49 0.33 0.49 0.68 0.49

Soft SVM 0.51 0.45 0.42 0.75 0.53

Recall

CNN Model 0.21 0.62 0.39 0.41 0.41

Tuning SVM 0.59 0.22 0.56 0.67 0.51

Soft SVM 0.48 0.21 0.58 0.90 0.54

F1-Score

CNN Model 0.31 0.43 0.35 0.54 0.41

Tuning SVM 0.54 0.26 0.52 0.68 0.50

Soft SVM 0.50 0.29 0.49 0.82 0.52

impact on the computation time. The Table 6 shows that Tun-

ing SVM takes considerably more computation time than other

techniques—around 2.5x and 12.5x more than CNN Model and

Soft SVM, respectively. Training model in Soft SVM was by far

the faster than others.

Table 6: Training Time in Different Techniques

Time

CNN Model. 15h 21m 24s

Tuning SVM 38h 24m 46s

Soft SVM 2h 54m

RQ3: Discrepancies between the performance of techniques on

OriginalDataset and LargeDataset

Comparison of performance Table 4 compares the performance

of CNN Model and Tuning SVM on OriginalDataset. CNN

Model achieved 0.84 F1-score, 0.84, 0.84 precision and recall, respec-

tively. Tuning SVM achieves 0.89 F1-score, 0.89 and 0.89 precision

and recall, respectively.

Performance of CNNModel and Tuning SVMon LargeDataset

are shown in Table 5. CNN Model achieves 0.41 F1-score, 0.50, 0.41

precision and recall, respectively. Tuning SVM achieves 0.50 F1-

score, 0.49 and 0.51 precision and recall, respectively.

By comparing the same approach on OriginalDataset and

LargeDataset, we find that the effectiveness of both CNN Model

and Tuning SVM, as measured by F1-score, drop sharply, around 40

percentage points. By comparing the performance of CNN Model

and Tuning SVM on the same dataset, our experimental results

confirm that the conclusion of Fu and Menzies [4] still holds on

the LargeDataset, i.e., CNN Model and Tuning SVM can achieve

similar results.

Comparison of training computation cost According to the

data reported in [4, 30], training CNN Model and Tuning SVM

on OriginalDataset take almost 14 hours, and 10 minutes, re-

spectively, on regular machines. Table 6 shows the training time

of approaches on LargeDataset. Training time of all techniques

increases on LargeDataset, but with different slopes. For example,

computation time for training in Tuning SVM from 10 minutes

on the OriginalDataset, jumps to 38 hours on LargeDataset,

while computation cost of training a model using CNN Model

increases from 14 hours to 15.3 hours, on OriginalDataset and

LargeDataset, respectively.

Comparing to each other, Tuning SVM (>38 hours) spends 2.5x

as much time as CNN Model (>15 hours). We find that this is due

to the fact that Tuning SVM approach by using a large number

of features, adapts several kernels and C parameters one by one

to tune the SVM. To reduce the potential variance caused by how

the original training data, this process repeats 10 times. Also, some

kernels (such as RBF kernel) used in Tuning SVM is not suitable for

LargeDataset because the time cost will increases exponentially

when the number of features becomes large [8]. On the other hand,

when using LargeDataset, there is only a slight increase in the

run-time of CNN Model approach which proves that the scale of

the dataset has slight impacts on the runtime of the technique.

RQ4: Performance of Soft SVM

Performance Rows corresponding to Soft SVM in Table 5 contain

performance of Soft SVM, i.e., 0.52 F1-score, 0.53, 0.54 precision

and recall, respectively. The results show that Soft SVM achieves

better overall performance than Tuning SVM and CNN Model in

terms of F1-score, precision, and recall.

Comparing results of individual classes, it is clearly visible that

Soft SVM has a performance advantage in predicting the Isolated

class over the other methods. In other three classes, Soft SVM

performs better than at least one of Tuning SVM and CNN Model.

For example, for Duplicate class it achieves 0.04 F1-score worse

than Tuning SVM but 0.19 better than CNNModel; for Direct class,

achieves 0.03 F1-score better than Tuning SVM and 0.14 lower than

CNN Model.

Comparison of computation time In terms of time efficiency,

Soft SVM spends much less time than the other two approaches.

As shown in Table 6, Soft SVM needs only less than 3 hours for

training on LargeDataset, while CNN Model and Tuning SVM

require 5x and 12x more time for training.

6 DISCUSSION

6.1 Shortcomings of the original dataset

We found that the dataset used in previous studies have several limi-

tations. First, we found that in the creation of the OriginalDataset,

clusters larger than a certain size KUNet has been removed mistak-

enly (creators of the OriginalDataset confirmed this mistake),

which results in only a small set of clusters with limited topic dis-

tribution. Second, we found that the OriginalDataset covers far

fewer topics than LargeDataset. There is also a larger overlap

among topics covered by knowledge units in OriginalDataset.

8

Prediction of Relatedness in Stack Overflow:
Deep Learning vs. SVM ESEM ’18, October 11–12, 2018, Oulu, Finland

Therefore, we believe that the results on LargeDataset are more

reliable than the results reported on OriginalDataset in previous

studies.

6.2 Performance of techniques

Our results on LargeDataset show that, consistent with the [4],

Tuning SVM keeps its performance advantage over CNN Model.

Our reproducibility study confirms that, in this task, Tuning SVM

performs better than deep learning technique. However, as the

number of instances for tuning increases in OriginalDataset,

Tuning SVM’s efficiency is diminished and it becomes slower than

CNN Model deep learning techniques.

Our results also suggest that an SVM model with lightweight

features, i.e. Soft SVM, can outperform CNN Model and Tuning

SVM. On the other hand, previous results showed high perfor-

mances of techniques (F1-score as high as 0.88) which leaves little

room for improvement. In this work, we improved the quality of

the dataset by covering more topics, adding more instances and

correcting improper preprocessing process. Our results on Large-

Dataset, shows that, contrary to previous results, the performance

of techniques are as low as F1-score=0.41.

Low performance of models suggests that proposed prediction

models, Soft SVM, is still highly inadequate for large, diverse

dataset. An alternative interpretation of low performance on Large-

Dataset can be that the relations between knowledge units are

purely stochastic and there is no feature to capture any relation.

7 THREATS TO VALIDITY

There are several threats that may potentially affect the validity

of our experiments. Threats to internal validity relate to errors

in our experimental data and tool implementation. To mitigate

this threat for the new dataset, i.e., LargeDataset, we manually

checked the selected knowledge units in the dataset to ensure that

they are really tagged with “java” and correctly labeled. Another

threat to internal validity is modifications to Tuning SVM to make

it parallel. However, we note the implementation of Tuning SVM

is simple, and we only execute each fold in parallel without modify

any internal implementation. Threats to external validity relate to

the generalizability of our results. In this study, we followed the

same steps as previous work [30] to create LargeDataset. Thus,

only the knowledge units tagged with “Java” are considered. The

threat is limited by the fact that “Java” has been consistently on the

top-5 list of most popular tags on Stack Overflow
6
.

8 RELATEDWORK

8.1 Knowledge Analysis in Stack Overflow

Many studies have been done on leveraging the knowledge on Stack

Overflow to improve developers’ productivity [25, 28, 29, 32]. Ye

et al. conducted an empirical study on analyzing the structure of

knowledge network in Stack Overflow [32]. They defined a ques-

tion and its answers on Stack Overflow as a knowledge unit. To
better understand the knowledge diffusion process, they presented

a methodology to analyze URL sharing activities in Stack Over-

flow. They found that knowledge units often contain semantically

6
https://stackoverflow.com/tags

relevant knowledge, and thus linkable for different purposes. For

example, two knowledge units will be labeled as duplicate if they

talk about the same technical problems but in different ways. The

structure of the knowledge network with respect to in-degree distri-

bution is scale-free, in spite of the ad-hoc and opportunistic nature

of URL sharing activities, while the out-degree distribution of the

knowledge network is not scale-free. Gao et al. leveraged knowl-

edge in Stack Overflow to fix recurring bugs in software systems [5].

Firstly, they extracted queries from crash traces and retrieved a list

of Q&A pages from Stack Overflow. Secondly, they analyzed the

pages and generate edit scripts. Thirdly, those generated scripts are

applied to target source code and filter out the incorrect patches.

In this work, we focus on the task of predicting relatedness

between know ledge units to support more targeted information

needs when users search or explore the knowledge base. compared

to previous studies which only focus on binary relationship (e.g.,

duplicate question prediction [1, 34]) between knowledge units,

our task is more challenging since there are multiple classes of

relatedness.

8.2 Traditional Machine Learning v.s. Deep

Learning

Deep learning approaches are widely applied in software engineer-

ing tasks [6, 12, 31, 33]. However, there are very limited studies

to compare performance of deep learning and traditional machine

learning techniques.

Lam et al. proposed a bug localization approach which combines

three deep neural network (DNN) models for different goals [12].

The first DNN model is built to bridge the lexical gap between

bug reports and source code. The second DNN model is built for

feature combination. The third DNN model is built to perform

dimension reduction for feature vectors. The experiment data are

six projects with more than 26,000 source files and the experiment

is performed based on a PC with CPU Intel Xeon CPU E5-2650

2.00GHz (32 cores), 126 GB RAM. Based on the experiment results,

their approach outperforms the baseline approach which is based

on machine learning approach (i.e., Naive Bayes). However, the

runtime information of the baseline methods was not reported and

they just claim that training time of DNN is large if only run in one

thread.

Yuan et al. presented a deep learning based approach for Android

malware detection [33]. More specifically, they adopted a deep be-

lief network (DBN) to classify malware from normal apps. They

crawled 250 malware apps and 250 normal apps from app store. In

the experiment, they compare the proposed deep learning based

approach outperforms other five machine learning approaches (i.e.,

SVM, C4.5, Naive Bayes, Linear Regression and Multi-layer Per-

ceptron). Unfortunately, neither execution time nor experiment

environment are provided.

Yang et al. also built a deep learning based classifier for defect

prediction [31]. In particular, they use DBN which contains three

stacked restricted boltzmann machines (RBMs) and a logistic regres-

sion classifier. They compare their approach against two baselines, a

standard logistic regression classifier and a random under-sampling

and logistic regression classifier without DBN. The experiment

dataset are six open source projects (i.e., Bugzilla, Columba, Eclipse

9

ESEM ’18, October 11–12, 2018, Oulu, Finland Bowen Xu, Amirreza Shirani, David Lo, and Mohammad Amin Alipour

JDT, Eclipse Platform, Mozilla and PostgreSQL) which contains a

total of 137,417 changes. The experiment results show that their

approach achieves the best performance on 4 out of the 6 projects.

However, the proposed approach (9.98s) spend 12 times more time

than the baseline (0.79s) under the experimental environment that

an Intel(R) Core(TM) T6570 2.10 GHz CPU, 4GB RAM desktop

running Windows 7 (32-bit).

Above all, many previous works only presented the high effec-

tiveness of deep learning approach without showing any informa-

tion of execution time [18, 27, 33]. On the other hand, some works

just simply report the time cost of the proposed approaches [6, 12,

24, 26]. In this work, we focus on the task that predicting relat-

edness between knowledge units on Stack Overflow and further

evaluate effectiveness and efficiency of different approaches on a

larger dataset.

9 CONCLUSION

In this paper, we performed a reproducibility study of multiple

techniques proposed for predicting relatedness of knowledge units

on Stack Overflow. We find that there are several limitations in the

original dataset used in the previous studies, thus we created a new

dataset to address these limitations. We observed that performance

of proposed approaches (as measured using F1-score) drop sharply

on the new dataset, however similar to the previous finding, perfor-

mance of SVM-based approaches (Fu and Menzies’ approach and

SimBow) are slightly better than the DNN-based approach, how-

ever, contrary to the previous findings, Fu and Menzies’ approach

runs much slower than DNN-based approach on the larger dataset

– its runtime grows sharply with increase in dataset size.

We conclude that, for this task, simpler approaches based on

SVM performs similarly to DNN-based approach. We also illustrate

the challenges brought by the increased size of data and show the

benefit of a lightweight SVM-based approach for this task.

REFERENCES

[1] Ahasanuzzaman, M., Asaduzzaman, M., Roy, C. K., and Schneider, K. A.

Mining duplicate questions of stack overflow. In Mining Software Repositories
(MSR), 2016 IEEE/ACM 13th Working Conference on (2016), IEEE, pp. 402–412.

[2] Begley, C. G., and Ioannidis, J. P. Reproducibility in science: improving the

standard for basic and preclinical research. Circulation research 116, 1 (2015),

116–126.

[3] Charlet, D., and Damnati, G. Simbow at semeval-2017 task 3: Soft-cosine

semantic similarity between questions for community question answering. In

Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-
2017) (2017), pp. 315–319.

[4] Fu, W., and Menzies, T. Easy over hard: A case study on deep learning. In

Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering
(2017), ACM, pp. 49–60.

[5] Gao, Q., Zhang, H., Wang, J., Xiong, Y., Zhang, L., and Mei, H. Fixing recurring

crash bugs via analyzing q&a sites (t). In Automated Software Engineering (ASE),
2015 30th IEEE/ACM International Conference on (2015), IEEE, pp. 307–318.

[6] Gu, X., Zhang, H., Zhang, D., and Kim, S. Deep api learning. In Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (2016), ACM, pp. 631–642.

[7] Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward networks

are universal approximators. Neural networks 2, 5 (1989), 359–366.
[8] Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al. A practical guide to support vector

classification. In Technical Report (2003), Department of Computer Science and

Information Engineering, National Taiwan University, Taiwan.

[9] Jiang, S., Armaly, A., and McMillan, C. Automatically generating commit

messages from diffs using neural machine translation. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE 2017,
Urbana, IL, USA, October 30 - November 03, 2017 (2017), pp. 135–146.

[10] Joachims, T. Text categorization with support vector machines: Learning with

many relevant features. In European conference on machine learning (1998),

Springer, pp. 137–142.

[11] Lai, S., Xu, L., Liu, K., and Zhao, J. Recurrent convolutional neural networks

for text classification. In AAAI (2015), vol. 333, pp. 2267–2273.
[12] Lam, A. N., Nguyen, A. T., Nguyen, H. A., and Nguyen, T. N. Combining

deep learning with information retrieval to localize buggy files for bug reports

(n). In Automated Software Engineering (ASE), 2015 30th IEEE/ACM International
Conference on (2015), IEEE, pp. 476–481.

[13] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature 521, 7553 (2015),
436.

[14] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W.,

and Jackel, L. D. Backpropagation applied to handwritten zip code recognition.

Neural computation 1, 4 (1989), 541–551.
[15] Mamykina, L., Manoim, B., Mittal,M., Hripcsak, G., andHartmann, B. Design

lessons from the fastest q&a site in the west. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (New York, NY, USA, 2011),

CHI ’11, ACM, pp. 2857–2866.

[16] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781 (2013).
[17] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. Distributed

representations of words and phrases and their compositionality. In Advances in
neural information processing systems (2013), pp. 3111–3119.

[18] Mou, L., Li, G., Zhang, L., Wang, T., and Jin, Z. Convolutional neural networks

over tree structures for programming language processing. In AAAI (2016), vol. 2,
p. 4.

[19] Sarikaya, R., Hinton, G. E., and Deoras, A. Application of deep belief networks

for natural language understanding. IEEE/ACM Transactions on Audio, Speech,
and Language Processing 22, 4 (2014), 778–784.

[20] StackOverflow. How to ask a good question?, http://stackoverflow.com/help/

how-to-ask, 2018.

[21] Storn, R., and Price, K. Differential evolution–a simple and efficient heuristic

for global optimization over continuous spaces. Journal of global optimization 11,
4 (1997), 341–359.

[22] Sun, Y., Chen, C., Wang, Q., and Boehm, B. W. Improving missing issue-commit

link recovery using positive and unlabeled data. In Proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering, ASE 2017,
Urbana, IL, USA, October 30 - November 03, 2017 (2017), pp. 147–152.

[23] Szegedy, C., Toshev, A., and Erhan, D. Deep neural networks for object

detection. In Advances in neural information processing systems (2013), pp. 2553–
2561.

[24] Wang, S., Liu, T., and Tan, L. Automatically learning semantic features for

defect prediction. In Proceedings of the 38th International Conference on Software
Engineering (2016), ACM, pp. 297–308.

[25] Wang, S., Lo, D., and Jiang, L. An empirical study on developer interactions

in stackoverflow. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing (2013), ACM, pp. 1019–1024.

[26] White, M., Tufano, M., Vendome, C., and Poshyvanyk, D. Deep learning

code fragments for code clone detection. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (2016), ACM, pp. 87–

98.

[27] White, M., Vendome, C., Linares-Vásqez, M., and Poshyvanyk, D. Toward

deep learning software repositories. In Mining Software Repositories (MSR), 2015
IEEE/ACM 12th Working Conference on (2015), IEEE, pp. 334–345.

[28] Xu, B., Xing, Z., Xia, X., and Lo, D. Answerbot: automated generation of answer

summary to developersź technical questions. In Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering (2017), IEEE Press,

pp. 706–716.

[29] Xu, B., Xing, Z., Xia, X., Lo, D., Wang, Q., and Li, S. Domain-specific cross-

language relevant question retrieval. In Proceedings of the 13th International
Conference on Mining Software Repositories (2016), ACM, pp. 413–424.

[30] Xu, B., Ye, D., Xing, Z., Xia, X., Chen, G., and Li, S. Predicting semantically link-

able knowledge in developer online forums via convolutional neural network. In

Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering (2016), ACM, pp. 51–62.

[31] Yang, X., Lo, D., Xia, X., Zhang, Y., and Sun, J. Deep learning for just-in-time

defect prediction. In Software Quality, Reliability and Security (QRS), 2015 IEEE
International Conference on (2015), IEEE, pp. 17–26.

[32] Ye, D., Xing, Z., and Kapre, N. The structure and dynamics of knowledge

network in domain-specific q&a sites: a case study of stack overflow. Empirical
Software Engineering (2016).

[33] Yuan, Z., Lu, Y., Wang, Z., and Xue, Y. Droid-sec: deep learning in android

malware detection. In ACM SIGCOMM Computer Communication Review (2014),

vol. 44, ACM, pp. 371–372.

[34] Zhang, Y., Lo, D., Xia, X., and Sun, J.-L. Multi-factor duplicate question detection

in stack overflow. Journal of Computer Science and Technology 30, 5 (2015), 981–
997.

10

http://stackoverflow.com/help/how-to-ask
http://stackoverflow.com/help/how-to-ask

	Abstract
	1 Introduction
	2 Task and Evaluation Metrics
	2.1 Predicting Relatedness in Stack Overflow
	2.2 Evaluation Metrics

	3 Replication
	3.1 Xu et al.'s Study (CNN Model)
	3.2 Fu and Menzies' Study (Tuning SVM)
	3.3 SimBow: A Lightweight Alternative (Soft SVM)

	4 Data
	4.1 Creating LargeDataset
	4.2 Characteristics of the new dataset

	5 Research Questions and Results
	5.1 Research Questions
	5.2 Results

	6 Discussion
	6.1 Shortcomings of the original dataset
	6.2 Performance of techniques

	7 Threats to Validity
	8 Related Work
	8.1 Knowledge Analysis in Stack Overflow
	8.2 Traditional Machine Learning v.s. Deep Learning

	9 Conclusion
	References

