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Abstract

The paper introduces a finite element method for the Navier-Stokes equations of in-
compressible viscous fluid in a time-dependent domain. The method builds on a quasi-
Lagrangian formulation of the problem and handles geometry in a time-explicit way. We
prove that numerical solution satisfies a discrete analogue of the fundamental energy esti-
mate. This stability estimate does not require a CFL time-step restriction. The method
is further applied to simulate a flow in a model of the left ventricle of a human heart,
where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced
Computed Tomography images.

1 Introduction

Fluid flows in time-dependent domains are ubiquitous in nature and engineering. In many
cases, fluid–structure interaction phenomena play important role and the domain evolution is
an unknown in the mathematical model that couples fluid and structure dynamics. Examples
include blood flow in compliant vessels, flows around turbine blades or fish locomotion. In
other situations, one may assume that the motion of the domain is given and one has to recover
the induced fluid flow. In biomedical applications, this second scenario is often accepted for
the blood flow simulations in a human heart when the (patient-specific) motion of the heart
walls is recovered from a sequence of Magnetic Resonance (MR), contrast enhanced Computed
Tomography (ceCT) or ultrasonic images, see, e.g., [1–8]. Nowadays numerical simulations
are commonly used to understand fluid dynamics and predict statistics of practical interest
in this and other applications. In the conventional approach one considers the Navier-Stokes
equations in a time-dependent domain to describe the fluid dynamics and further applies
numerical method to solve them. In the present paper, we introduce a finite element (FE)
method for a quasi-Lagrangian formulation of the incompressible Navier-Stokes equations in a
moving domain. We analyze its numerical stability, and apply the method to simulate a flow
in a model of the left ventricle of a human heart.
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FEM for NSE in a time-dependent domain 2

Several techniques have been introduced in the literature to overcome the numerical dif-
ficulties due to the evolution of the domain. This includes the space–time finite element
formulations, immersed boundary methods, level-set method, fictitious domain method, un-
fitted finite elements, and arbitrary Lagrangian–Eulerian (ALE) formulation, see, e.g., [9–17].
In this paper we propose a finite element method based on a quasi-Lagrangian formulation of
the equations in the reference domain. The method uses a fixed mesh fitted to the boundary
of the computational domain. The time-dependent coefficients, which account for the domain
evolution, are handled with a time lag. This and the linearization of the inertia terms lead
to a linear discrete problem on each time step. We prove the stability of this semi-explicit
method without any CFL-type restriction on the time-step. Related analyses of finite element
methods for parabolic or fluid equations in moving domains can be found in several places
in the literature. We note that well-posedness of space-time weak saddle-point formulations
of the (Navier–)Stokes equations is a subtle question, see the recent treatment in [18] for the
case of a steady domain. This may explain why a rigorous stability and convergence analy-
sis of space–time (FE) methods for fluid problems is seemingly lacking. Scalar problems are
understood much better; for example, a space–time discontinuous FE method for advection–
diffusion problems on time-dependent domains was analyzed in [19]. ALE and Lagrangian
finite element methods are more amenable to analysis. The stability of ALE finite element
methods for parabolic evolution problems was treated in [16]. In [20] the authors analyzed
the convergence of a finite element ALE method for the Stokes equations in a time-dependent
domain when the motion of the domain is given. The analysis imposes time step restriction
and certain smoothness assumptions for the finite element displacement field. In the present
paper, we prove the energy stability of a finite element method applied to the quasi-Lagrangian
formulation of the Navier-Stokes problem.

We further illustrate the performance of the numerical method by applying it to simulate
a flow dynamics in a model of the human left ventricle. The domain motion in this example is
reconstructed from a sequence of ceCT images of a real patient heart over one cardiac cycle.
Several techniques are commonly used for dynamic model reconstruction from medical images,
including control points tracking [1, 4] and contour propagation [3, 5]. In some cases, the
conventional thresholding method is sufficient, in others, the manual segmentation is required.
In our work, we use machine learning technique trained on partial manual segmentation. The
details of the reconstruction method and results of the simulation are given in section 5.

2 Mathematical model

Consider a time-dependent domain Ω(t) ⊂ Rd, d = 2, 3, occupied by fluid. To formulate a flow
problem, we introduce the reference domain Ω0 = Ω(0) and a mapping from the space–time
cylinder Q := Ω0 × [0, T ] to the physical domain,

ξ : Q→
⋃

t∈[0,T ]

Ω(t).

The mapping is assumed to be level-preserving, i.e. ξ(Ω0 × {t}) = Ω(t) for all t ∈ [0, T ]. We
assume also that the evolution of Ω(t) is sufficiently smooth such that ξ ∈ C2(Q)d. Denote
the spatial gradient matrix of ξ by F = ∇xξ, and J := det(F). Furthermore, we assume that
there exist such positive reals CF , cJ that

inf
Q
J ≥ cJ > 0, sup

Q
(‖F‖F + ‖F−1‖F ) ≤ CF , with ‖F‖F := tr(FFT )

1
2 . (1)
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The dynamics of incompressible Newtonian fluid can be described in terms of the velocity
vector field û(x, t) and the pressure function p̂(x, t) defined in Ω(t) for t ∈ [0, T ]. In this paper,
we distinguish between the no-slip ∂Ωns(t), Dirichlet ∂ΩD(t) and outflow ∂ΩN (t) parts of the
boundary, and ∂Ω(t) = ∂Ωns(t) ∪ ∂ΩD(t) ∪ ∂ΩN (t). On ∂Ωns(t) we impose no-penetration
no-slip boundary condition, i.e. the fluid velocity on ∂Ω(t) is equal to the material velocity of
the boundary (see Remark 1 below),

û = ξt ◦ ξ−1 on ∂Ωns(t), (2)

while on ∂ΩD(t) and ∂ΩN (t) we prescribe Dirichlet and Neumann conditions,

û = ûD on ∂ΩD(t), σ̂n = ĝ on ∂ΩN (t). (3)

Here uD is a given velocity, σ̂ denotes the Cauchy stress tensor, and n is the exterior unit
normal vector on ∂ΩN (t).

Remark 1. The normal velocity of the boundary ∂Ω(t) is vΓ = n · (ξt ◦ ξ−1). However, the
material tangential velocity of the boundary is defined by the tangential part of ξt only if ξ
is the Lagrangian mapping, i.e. ξ(x, t), t ∈ [0, T ], defines the material trajectory for x ∈ Ω0

(or at least for x ∈ ∂Ω0). In some applications such Lagrangian mapping is not available, and
in this case (2) may produce spurious tangential velocities on the boundary. Thus, in practice
one may amend (2) based on any additional information about the tangential motions for a
better model.

This paper introduces a finite element method for fluid equations formulated in the reference
domain. For u = û ◦ ξ, p = p̂ ◦ ξ defined in Q, the fluid dynamics is given by the following set
of equations:

{
ut − J−1div (J(σ̂ ◦ ξ)F−T ) + (∇u)(F−1(u− ξt)) = f

div (JF−1u) = 0
in Q, (4)

with body forces f = f̂◦ξ. The governing equations are complemented with the initial condition

u(x, 0) = u0(x) in Ω0. (5)

We assume the fluid to be Newtonian, with the kinematic viscosity parameter ν. The consti-
tutive relation in the reference domain reads

σ̂ ◦ ξ = −pI + ν(∇uF−1 + F−T (∇u)T ) in Q. (6)

The solvability of the problem (4) and the existence of its weak solutions is treated, for example,
in [21]. Moreover, it is shown in [21] that for smoothly evolving Ω(t) the mapping ξ can be
chosen in such a way that J depends only on t. However, from numerical viewpoint, such a
mapping ξ may not be practically available, and so we allow J to vary in time and space.

Before recalling the energy balance for a smooth solution of the fluid problem, we recall a
few useful identities. The mass balance yields the equality

Jt + div (JF−1(u− ξt)) = 0 in Q. (7)

The Piola identity, div (JF−1) = 0, implies the following equality

div (JF−1u) = J(∇u) : F−T in Q, (8)

where A : B := tr(ABT ).
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2.1 Energy equality

For the analysis, we shall assume that no-penetration no-slip boundary condition (2) is imposed
on the whole boundary, i.e. ∂Ω(t) = ∂Ωns(t). We handle non-homogeneous boundary condi-
tions in a standard way using the decomposition u = v + v1, with v1 = ξt on ∂Ω0 × [0, T ].
Moreover, there exists v1 ∈ C1(Q)d satisfying div (JF−1v1) = 0, cf. [21]. From this, the
continuity equation in (4), and boundary condition (2), it follows that

div (JF−1v) = 0 and v = 0 on ∂Ω0 × [0, T ]. (9)

By (·, ·) we denote the L2(Ω0) scalar product, and ‖ · ‖ denotes the L2(Ω0) norm. For
vector fields v,u : Ω0 → Rd and tensor fields A,B : Ω0 → Rd×d, we use the same notation
to denote (u,v) =

∫
Ω0

uTv dx and (A,B) =
∫

Ω0
tr(ABT ) dx, and obviously ‖u‖ := (u,u)

1
2 ,

‖A‖ := (A,A)
1
2 . We make use of the identity:

(w · ∇u, v) +
1

2
((divw)u, v) =

1

2
((w · ∇u, v)− (w · ∇v, u)) +

1

2

∫

∂Ω0

(n ·w)uv ds. (10)

We multiply the first equality in (4) by v, integrate it over the reference domain, and employ
(10) for integration by parts and cancellation of the pressure term. We get

1

2

d

dt
‖J 1

2v‖2 − 1

2
(Jt v,v)− (J(σ ◦ ξ)F−T ,∇v)

+
1

2
(div (JF−1(v − ξt))v,v) + (J(∇v1F

−1v),v)

= (Jf ,v)−
(
J
∂v1

∂t
,v

)
− (J(∇v1)(F−1(v1 − ξt)),v).

The identity (7) leads to some cancellations and we get

1

2

d

dt
‖J 1

2v‖2 + (J(σ ◦ ξ)F−T ,∇v) + (J(∇v1F
−1v),v)

=

(
J

[
f − ∂v1

∂t
− (∇v1)F−1(v1 − ξt)

]
,v

)
.

Using the notation Dξ(v) = 1
2(∇vF−1 + F−T (∇v)T ) for the rate of deformation tensor in the

reference coordinates, we get with the help of (8) and the second equation in (4)

(J(σ ◦ ξ)F−T ,∇v) = (J(−pI + ν(∇uF−1 + F−T (∇u)T ))F−T ,∇v) = 2ν(JDξ(u)F−T ,∇v)

= 2ν(JDξ(u),∇vF−1) = 2ν(JDξ(u),Dξ(v)).

In the last equality we used that for any symmetric tensor A and any tensor B, it holds
A : B = 1

2A : (B + BT ). Hence, using the splitting u = v + v1 we get

(J(σ ◦ ξ)F−T ,∇v) = 2ν‖J 1
2Dξ(v)‖2 + 2ν(div (JDξ(v1)F−T ),v).

Therefore, the energy balance equality in ALE coordinates takes the form

1

2

d

dt
‖J 1

2v‖2 + 2ν‖J 1
2Dξ(v)‖2 + (J(∇v1F

−1v),v) = (f̃ ,v) , (11)

where f̃ =
(
J(f − ∂v1

∂t − (∇v1)F−1(v1 − ξt)) + 2νdiv (JDξ(v1)F−T )
)
∈ L2(0, T ;H−1(Ω0)) ac-

counts for all external forces, including volume forces and those exerted on the fluid by the
evolving boundary. The mechanical interpretation of (11) is the following one: the work of all
external forces (right-hand side) is balanced by the change of kinetic energy (the first term),
energy of viscous dissipation (the second term), and flow intensification due to the boundary
condition (the third term).
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2.2 Weak formulation

We need some preliminaries. We start with Korn’s-type inequality in the reference domain,

‖∇u‖ ≤ CK‖J
1
2Dξ(u)‖ ∀ u ∈ H1

0 (Ω0)d, t ∈ [0, T ], (12)

with CK uniformly bounded with respect to t ∈ [0, T ]. To show (12), one uses assumptions
(1) and Korn’s inequality for functions vanishing on the boundary: For any t ∈ [0, T ], we have

‖∇u‖ = ‖J− 1
2∇(u ◦ ξ−1)F‖L2(Ω(t)) ≤ CF c

− 1
2

J ‖∇(u ◦ ξ−1)‖L2(Ω(t))

=
1√
2
CF c

− 1
2

J ‖∇(u ◦ ξ−1) +∇T (u ◦ ξ−1)‖L2(Ω(t))

=
√

2CF c
− 1

2
J ‖J

1
2Dξ(u)‖.

For t ∈ [0, T ] we now introduce the following time-dependent trilinear and bilinear forms:

c(ξ;w,u,ψ) =

∫

Ω0

J
(
(∇u)F−1w

)
·ψ dx, w,u,ψ ∈ H1(Ω0)d,

a(ξ;u,ψ) =

∫

Ω0

2νJDu : Dψ dx, u,ψ ∈ H1(Ω0)d,

b(ξ; p,ψ) =

∫

Ω0

pJF−T : ∇ψ dx, p ∈ L2(Ω0), ψ ∈ H1(Ω0)d.

Thanks to (1) and the Korn’s-type inequality (12) the bilinear form a(ξ(t); ·, ·) is coercive
and continuous on H1

0 (Ω0)d × H1
0 (Ω0)d uniformly in time and b(ξ(t); ·, ·) is continuous on

L2(Ω0) × H1
0 (Ω0)d uniformly in time. The weak formulation of (4) reads: Find {v, p} ∈

L2(0, T ;H1
0 (Ω0)d) ∩ L∞(0, T ;L2(Ω0)d)× L2(Q) satisfying

(Jvt,ψ) + c(ξ;u− ξt,v,ψ) + c(ξ;v,v1,ψ) + a(ξ;v,ψ)

− b(ξ; p,ψ) + b(ξ; q,v) = (f̃ ,ψ) (13)

for all ψ ∈ H1
0 (Ω0)d, q ∈ L2(Ω0) for all t ∈ [0, T ] in the sense of distribution.

3 Discretization method

In this section we introduce both time and space discretizations of the formulation (4) in the
reference domain. Treating the problem in reference coordinates allows us to avoid triangula-
tions and finite element function spaces dependent on time. In this paper, we assume that the
mapping ξ and velocity v1 are given explicitly and are used in the finite element formulation
without any further numerical approximation.

Let a collection of simplices Th (triangles in d = 2 and tetrahedra in d = 3) form a
consistent regular triangulation Th of the reference domain Ω0. Consider conforming FE spaces
Vh ⊂ H1(Ω0)d and Qh ⊂ L2(Ω0); V0

h is a subspace of Vh of functions vanishing on the boundary
of Th. We assume that V0

h and Qh form the LBB-stable finite element pair: There exists a
mesh-independent constant c0, such that

inf
qh∈Qh

sup
vh∈V0

h

(qh,divvh)

‖∇vh‖‖qh‖
≥ c0 > 0. (14)
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As an example of admissible discretization, we consider the generalized Taylor-Hood finite
element spaces,

Vh = {uh ∈ C(Ω0)d : uh|T ∈
[
Pm+1(T )

]d
,∀ T ∈ Th},

Qh = {qh ∈ C(Ω0) : qh|T ∈ Pm(T ),∀ T ∈ Th},
(15)

where integer m ≥ 1 is a polynomial degree.
Assuming a constant time step ∆t = T

N , we use the notation vk(x) := v(k∆t,x), and

similar for p and ξ. To emphasize the dependence on k, denote Fk := ∇ξk, Jk := det(F(ξk)),
Dk(v) := Dξk(v).

For given spatial functions f i, i = 0, . . . , k, [f ]kt := fk−fk−1

∆t denotes the backward finite
difference at t = k∆t. Let v0

h be the Lagrange interpolant of the initial velocity field. The
linearized finite element discretization of (13) reads: For k = 1, 2, . . . , find {vkh, pkh} ∈ V0

h×Qh

satisfying for all ψh ∈ V0
h, qh ∈ Qh

(
Jk−1 [vh]kt ,ψh

)
+

(
1

2
[J ]kt v

k
h,ψh

)
+

1

2
(div

(
JkF

−1
k wk

h

)
vkh,ψh)

+ c(ξk;wk
h,v

k
h,ψh) + c(ξk;vkh,v

k
1 ,ψh) + a(ξk;vkh,ψh)

− b(ξk; pkh,ψh) + b(ξk; qh,v
k
h) = (f̃k,ψh) (16)

with ALE advection velocity wk
h :=

(
vk−1
h + vk−1

1 − [ξ]k−1
t

)
.

The second and the third terms in (16) are consistent due to the identity (7) and are added
in the FE formulation to enforce the conservation property of the discretization. While our
computations show that in practice this term can be skipped, we need these terms for the
stability bound in the next section. In the numerical analysis of incompressible Navier-Stokes
equations in the Eulerian description, including these terms corresponds to the Temam’s skew-
symmetric form of the convective terms [22].

Note that the inertia terms are linearized so that a linear algebraic system should be solved
on each time step. In the next section we show that the finite element method is energy stable.

4 Stability of FEM solution

First we test (16) with ψh = vkh, qh = pkh. We handle each resulting term separately and start
with the first term in (16):

(Jk−1 [vh]kt ,v
k
h) =

1

2∆t

(
‖J

1
2
k v

k
h‖2 − ‖J

1
2
k−1v

k−1
h ‖2

)

− 1

2
([J ]kt v

k
h,v

k
h) +

∆t

2
‖J

1
2
k−1 [vh]kt ‖2 . (17)

Applying (10) to the fourth (inertia) term in (16) and using boundary conditions give

(Jk(∇vkhF−1
k wk

h),vkh) = −1

2
(div

(
JkF

−1
k wk

h

)
vkh,v

k
h). (18)

The sixth term in (16) gives

a(ξk;vkh,v
k
h) = 2ν

(
JkDk(v

k
h),Dk(v

k
h)
)

= 2ν

∥∥∥∥J
1
2
k Dk(v

k
h)

∥∥∥∥
2

.
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The b-terms cancel out for qh = pkh. Substituting all equalities back into (16), we obtain after
some cancellations the following energy balance for the finite element problem:

1

2∆t

(
‖J

1
2

k vk
h‖2 − ‖J

1
2

k−1v
k−1
h ‖2

)

︸ ︷︷ ︸
+2ν

∥∥∥J
1
2

k Dk(vk
h)
∥∥∥
2

︸ ︷︷ ︸
+

(∆t)

2

∥∥∥J
1
2

k−1 [vh]
k
t

∥∥∥
2

︸ ︷︷ ︸
+(Jk(∇vk

1F
−1
k )vk

h,v
k
h)︸ ︷︷ ︸

variation of energy of O(∆t) dissipative intensification
kinetic energy viscous dissipation term due to b.c.

= (f̃k,vk
h)︸ ︷︷ ︸

work of
ext. forces

(19)

One notes that the above equality resembles the energy balance (11) of the original flow
problem up to a O(∆t) term. The O(∆t) term in (19) is non-negative and dropping it changes
the equality to inequality. We deduce an energy stability estimate for the finite element method

from the balance in (19). To this end, we introduce ‖ · ‖k :=
(∫

Ω0
Jk| · |2 dx

) 1
2
, which defines

a k-dependent norm uniformly equivalent to the L2-norm.
Thanks to Sobolev’s embedding inequalities as well as (1) and (12), we bound the intensi-

fication term resulting from the boundary motion in two ways,

|(Jk(∇vk1F−1
k )vkh,v

k
h)| ≤

{
C‖∇vk1‖‖∇vkh‖2 ≤ C1‖∇vk1‖‖Dk(v

k
h)‖2k,

C‖∇vk1‖L∞(Ω0)‖vkh‖2 ≤ C2‖vkh‖2k.

If the factor C1‖∇vk1‖ is not too large so that it holds

C1‖∇vk1‖ ≤ ν/2, (20)

then the intensification term can be absorbed by the viscous dissipation term. We handle the
forcing term in a standard way with the help of the Cauchy and the Korn inequality (12). So
we obtain from (19)

1

2
‖vkh‖2k + ν∆t‖Dk(v

k
h)‖2k ≤

1

2
‖vk−1

h ‖2k−1 + C∆t‖f̃k‖2. (21)

Summing up inequalities (21) for k = 1, . . . , n, n ≤ N , gives

1

2
‖vnh‖2n + ν

n∑

k=1

∆t‖Dk(v
k
h)‖2k ≤

1

2
‖v0‖20 + C

n∑

k=1

∆t‖f̃k‖2. (22)

Otherwise, if (20) does not hold, we estimate

1

2
(1− 2C2∆t)‖vkh‖2k + ν∆t‖Dk(v

k
h)‖2k ≤

1

2
‖vk−1

h ‖2k−1 + C∆t‖f̃k‖2. (23)

Now we assume that ∆t is sufficiently small such that (1 − 2C2∆t) = α > 0. Summing over
k = 1, . . . , n, gives

1

2
‖vnh‖2n + ν

n∑

k=1

∆t‖Dk(v
k
h)‖2k ≤ C2

n∑

k=1

∆t‖vkh‖2k +
1

2
‖v0‖20 + C

n∑

k=1

∆t‖f̃k‖2. (24)
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With the help of the discrete Gronwall lemma, e.g. [23], inequality (24) yields

1

2
‖vnh‖2n + ν

n∑

k=1

∆t‖Dk(v
k
h)‖2k ≤ e

2C2
α
T

(
1

2
‖v0‖20 + C

n∑

k=1

∆t‖f̃k‖2
)
. (25)

Estimates (22) and (25) show the energy stability of the finite element method. The first of
these two inequalities holds if (20) is satisfied.

5 Application to the left ventricle hemodynamics

We illustrate the performance of our method for solving the Navier-Stokes equations in a
moving domain. The method is applied to simulate a flow in a model of the left ventricle
of a human heart. The hemodynamics of the heart is characterized by transitional or even
turbulent blood flows, see e.g. [6, 24, 25]. Therefore, realistic simulations should employ a
subgrid model, such as Large Eddy Simulation (LES) model of turbulence [6], unless the mesh
is sufficiently fine to resolve all scales in the flow. The choice and calibration of a suitable
turbulence model is beyond the scope of this study. To be able to compute stable solutions
with the FE method (16) on a realistic mesh, we consider a larger blood viscosity: we set
ν = 4 · 10−5 m2/s; it is about 10 times larger than the true viscosity. For the same reason
we smooth in time the motion of the heart wall during the diastole phase, see details below.
We consider the left ventricle due to its hemodynamic significance, but the method is equally
applicable to the right ventricle.

The motion of the ventricle is recovered from a sequence of ceCT images of a real patient.
The recovered data provides displacement field for the ventricle’s wall, which is used in the
FE method (16). The input data was a dataset of 100 images with 512× 512× 480 voxels and
0.625×0.625×0.25 mm resolution. The images were taken from a chest ceCT of a 50-years-old
female.

First we build a dynamic grid model. Next we use this auxiliary dynamic grid to define
the mapping ξ in our quasi-Lagrangian method. We recall that all computations in our FE
method are done on a fixed reference mesh. The dynamic grid model is built in several steps.
At the first stage, the images are preprocessed by the 3D non-local means smoothing [26], and
then cropped down and resampled to the region of interest. For the machine-learning stage of
the reconstruction, we select three images at different stages of cardiac cycle: the beginning of
systole, the end of systole, and the middle of rapid inflow during diastole. We perform a manual
segmentation of these three images using the level set method from ITK-SNAP package [27].
Next, all the remaining images are segmented by the machine learning technique with the
random forest classifier [28], which was trained on the manually segmented images. At the
next stage, the segmentation is smoothed, and its subsequent correction is performed with
the help of mathematical operations such as dilation, erosion, and construction of connected
regions. The valve areas are identified in each image as the interface between the ventricle
and the atrium and the interface between the ventricle and the aorta. We average the valve
areas over all the images to determine the unique position of the valve planes. To simplify the
mesh generation and numerical modeling, the valve planes are assumed to be intact during the
cardiac cycle.

Application of the Delaunay triangulation from CGAL Mesh library [29] for the first seg-
mented image yields an unstructured tetrahedral mesh with typical mesh size of 0.7 mm.
Within the mesh, the left ventricle is defined implicitly by segmented image, the valve planes
are defined explicitly. We enforce each tetrahedron to have at least one internal node by split-
ting each cell with four boundary nodes. The main requirement for a 3D dynamic grid model
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of the heart ventricle is to preserve mesh connectivity: in the sequence of grids only nodal posi-
tions change. We deform the mesh by node movements for each subsequent image. At the first
stage, we move only boundary nodes while simultaneously propagating and smoothing the sur-
face mesh. Each boundary node is shifted in the direction of the weighted sum of two vectors:
the surface normal vector (weight 0.2) and the vector pointing at the center of surrounding
nodes (weight 0.4). This procedure is repeated until the maximum displacement drops below
ε = 0.001 mm, or until the maximum number of 2000 iterations is exceeded. Note that the
above algorithm does not recover the material trajectories of ventricle points and therefore
may produce spurious tangential velocities on the boundary, see Remark 1. We pay special
attention to the nodes on the valve planes: they should always stay on the planes (Fig. 1).
At the second stage, we apply simultaneous untangling and smoothing algorithm [30]; the
boundary nodes are fixed, and only the internal nodes are shifted. The untangling stage is
robust due to the presence of internal nodes in all tetrahedra. The final output is the series
of topologically invariant meshes with 14033 nodes, 88150 edges and 69257 tetrahedra for the
left ventricle recovered from the dynamic ceCT images (Fig. 2).

Figure 1: The ventricle surface mesh at the end of systole, t = 300 ms: (a) horizontal long axis
view, (b) vertical long axis view, (c) anterior view.

To set up the boundary conditions, we split the left ventricle boundary into several patches
shown in Fig. 3. All the patches are time-dependent, but the flat patches labeled as 2 through
5 do not leave their planes during the motion. We assume that the blood leaves the ventricle
through the aortic valve 2 during the systole phase, while the mitral valve 5 is connected to
the atrium and sucks blood in during the expansion stage called diastole. Patches 3 and 4 lie
in the same planes as patches 2 and 5, respectively. Both of these sites are not involved in the
blood transfer and serve as separators between the valves.

At the initial moment of time, the beginning of the systole stage, we assume the system is
at rest with zero pressure.

The impact of the valves is taken into account in the model through appropriate boundary
conditions. The ventricle passes through the systole phase approximately until t = 355 ms
releasing blood flow through the aortic valve. During this time interval, we set the “do-
nothing” boundary condition (3) with ĝ = 0 on the patch with label 2. For the remaining time
interval ending at T = 1.2573 s, we impose the analogous condition on the patch with label 5.
Finally, on all other sites, including valve 2 during the diastole phase and valve 5 during the
systole phase, the no-penetration no-slip condition (2) is imposed, u = ξt.
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Figure 2: Section of the volumetric mesh at the end of systole, t = 300 ms: (a) horizontal long
axis view, (b) vertical long axis view, (c) anterior view.

Figure 3: Left ventricle with marked surface labels: wall surface 1, aortic valve 2, mitral valve
5, separators 3 and 4.
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We note that both “do-nothing” and no-penetration no-slip conditions on valve sites are
simplifications. We plan to implement more realistic generalizations [31] in a future.

The reference domain Ω0 is given by the mesh at time t = 0. For the spatial discretization
of the equations in Ω0, we use the minimal degree Taylor-Hood finite element spaces (15) with
m = 1. This leads to linear systems with 320582 unknowns, comprised of 14033 nodal pressure
degrees of freedom and 14033+88150 degrees of freedom residing at the mesh vertices and edge
centers, for each velocity component. Denote by x the spatial coordinates of a node of the
reference grid at time t = 0, and identify the coordinates ξ(x, t) of the corresponding node at
time t = tk. We now define the mapping ξk as the continuous piecewise linear vector function
on the reference grid, which takes the values ξ(x, t) at the reference grid nodes x.

Omitting the second and the third terms in (16) (see the comment right after (16)), we
can rewrite the method in the following convenient form: Find velocity uk ∈ Vh and pressure
pk ∈ Qh satisfying equation

∫

Ω0

Jk
uk − uk−1

∆t
·ψ dx + +

∫

Ω0

Jk∇ukF−1
k

(
uk−1 − ξ

k − ξk−1

∆t

)
·ψ dx

−
∫

Ω0

Jkp
kF−Tk : ∇ψ dx +

∫

Ω0

JkqF
−T
k : ∇uk dx

+

∫

Ω0

νJk(∇ukF−1
k F−Tk + F−Tk (∇uk)TF−Tk ) : ∇ψ dx = 0

(26)

and the no-penetration no-slip uk = (ξk− ξk−1)/∆t or the “do-nothing” boundary conditions,
for all ψ and q from the appropriate FE spaces.

We note that the time between two adjacent frames (and meshes) is equal to 12.7 millisec-
onds. Given the fast motion of the ventricle, such time step turned out to be too large to
deliver acceptable accuracy. Therefore, we take a step 20 times smaller, i.e. ∆t = 0.635 ms,
and generate a new series of meshes in the pre-processing phase. The intermediate meshes
are interpolated by cubic splines from the available 100 meshes. The enriched mesh sequence
contains 1981 meshes instead of 100. The calculation does not reveal any time instance at
which the condition J > 0 is violated. This indicates a good quality of the resulting series of
meshes.

In order to reduce the observed ventricle volume rate causing extremely high influx ve-
locities at the diastole phase, we constructed five new mesh sets by applying a different level
of time smoothing for the wall displacements. Fig. 4 shows the dependence of the ventricle
volume on time for all of these meshes. The volume curves, starting from the closest to the
original one, are marked as A, B, C, D, E. The simulation of the entire cardiac cycle was
successful for the mesh sequences C, D, and E.

The velocity streamlines and the Q-criterion at 300 ms (the systole phase) are shown in
Fig. 5 and Fig. 6, respectively.

6 Conclusion

We presented a finite element method for the solution of the Navier-Stokes equations in a
time-dependent domain. The method requires the solution of a linear system on each time
step. The stability estimate does not require a CFL time-step restriction.

We demonstrated applicability of the method by simulating a flow in the human left ventri-
cle. The moving mesh sequence was generated from anonymized ceCT images. The shortcom-
ing of the ceCT modality is lack of information about the tangential velocity of the ventricle
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Figure 4: The ventricle volume change in time for six different domains, including the original
one

Figure 5: Velocity streamlines at the end of systole, t = 300 ms: (a) horizontal long axis view,
(b) vertical long axis view, (c) anterior view.
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Figure 6: Q-criterion at the end of systole, t = 300 ms: (a) horizontal long axis view, (b) vertical
long axis view, (c) anterior view.

wall. A possible solution is the use of the 4D Ultra Sound image dataset. Our forthcoming
paper addresses error analysis of the finite element method (16). In a future we plan to add a
subgrid model to be able to compute realistic hemodynamics of the heart.
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